Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 3462, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859468

ABSTRACT

Contamination of public parks by dogs is a potential source of conflict among park users, causing "tragedy of the commons" problems. Besides the social conflict, feces can pose serious health risks to both dogs and humans. In this study we analyzed the extent and patterns of the distribution of dog feces in the urban parks of the City of Calgary. We collected dog feces from randomly selected locations in the urban parks. The average density of dog feces by the different dog leash policies of the parks and the distribution pattern of the fecal density within the parks were assessed, and the total contamination of the public parks for the entire city was estimated. We found off-leash parks to be significantly more contaminated than other types of parks. We estimated 127.23 g/ha of dog feces are left unpicked in city parks in total every week. Dog feces were found more often and in greater amount in off-leash parks, and near park entrances and parking lots, than in on-leash parks and away from the park entrances. These results suggest that public park visitors, especially those visiting off-leash parks, are likely to be exposed to large amounts of dog feces. Designation of parks as on-leash and educating dog-owners may be an effective approach for reducing the fecal contamination.


Subject(s)
Drug Contamination , Parks, Recreational , Humans , Animals , Dogs , Feces , Policy
2.
Int J Parasitol Parasites Wildl ; 9: 49-55, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30993074

ABSTRACT

BACKGROUND: Echinococcus multilocularis (Em) is a parasite with a complex life cycle whose transmission involves a predator-prey interaction. Accidental ingestion of Em eggs by humans may cause alveolar echinococcosis, a potentially fatal disease. Although previous research suggested that the composition of the assemblage of prey species may play a key role in the transmission, the relation between Em presence and the prey assemblages has never been analyzed. Herein, we propose a community analysis approach, based on assemblage similarity statistics, clustering, non-metric dimensional scaling and GLM modelling to analyze the relationships between small mammal assemblages, environmental variables, and the prevalence of Em in intermediate and definitive hosts in an urban area. RESULTS: In our study areas within the City of Calgary, Alberta (Canada), we identified three main small mammal assemblages associated with different prevalence of Em, characterized by a different proportion of species known to be good intermediate hosts for Em. As expected, assemblages with higher proportion of species susceptible to Em were observed with higher prevalence of parasite, whereas the total abundance per se of small mammals was not a predictor of transmission likely due to dilution effect. Furthermore, these assemblages were also predicted by simple environmental proxies such as land cover and terrain. CONCLUSIONS: Our results indicated that the use of a community analysis approach allows for robust characterization of these complex and multivariate relationships, and may offer a promising tool for further understanding of parasite epidemiology in complex multi-host systems. In addition, this analysis indicates that it is possible to predict potential foci of disease risk within urban areas using environmental data commonly available to city planners and land managers.

3.
J Environ Manage ; 162: 148-57, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26241930

ABSTRACT

Negotiation is an integral part of our daily life and plays an important role in resolving conflicts and facilitating human interactions. Automated negotiation, which aims at capturing the human negotiation process using artificial intelligence and machine learning techniques, is well-established in e-commerce, but its application in environmental resource management remains limited. This is due to the inherent uncertainties and complexity of environmental issues, along with the diversity of stakeholders' perspectives when dealing with these issues. The objective of this paper is to describe the main components of automated negotiation, review and compare machine learning techniques in automated negotiation, and provide a guideline for the selection of suitable methods in the particular context of stakeholders' negotiation over environmental resource issues. We advocate that automated negotiation can facilitate the involvement of stakeholders in the exploration of a plurality of solutions in order to reach a mutually satisfying agreement and contribute to informed decisions in environmental management along with the need for further studies to consolidate the potential of this modeling approach.


Subject(s)
Decision Support Techniques , Negotiating/methods , Artificial Intelligence , Bayes Theorem , Environment , Humans , Machine Learning , Uncertainty
4.
Environ Manage ; 53(2): 357-81, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24363162

ABSTRACT

The Elbow River watershed in Alberta covers an area of 1,238 km(2) and represents an important source of water for irrigation and municipal use. In addition to being located within the driest area of southern Canada, it is also subjected to considerable pressure for land development due to the rapid population growth in the City of Calgary. In this study, a comprehensive modeling system was developed to investigate the impact of past and future land-use changes on hydrological processes considering the complex surface-groundwater interactions existing in the watershed. Specifically, a spatially explicit land-use change model was coupled with MIKE SHE/MIKE 11, a distributed physically based catchment and channel flow model. Following a rigorous sensitivity analysis along with the calibration and validation of these models, four land-use change scenarios were simulated from 2010 to 2031: business as usual (BAU), new development concentrated within the Rocky View County (RV-LUC) and in Bragg Creek (BC-LUC), respectively, and development based on projected population growth (P-LUC). The simulation results reveal that the rapid urbanization and deforestation create an increase in overland flow, and a decrease in evapotranspiration (ET), baseflow, and infiltration mainly in the east sub-catchment of the watershed. The land-use scenarios affect the hydrology of the watershed differently. This study is the most comprehensive investigation of its nature done so far in the Elbow River watershed. The results obtained are in accordance with similar studies conducted in Canadian contexts. The proposed modeling system represents a unique and flexible framework for investigating a variety of water related sustainability issues.


Subject(s)
Conservation of Natural Resources , Rivers , Water Movements , Alberta , Computer Simulation , Groundwater , Models, Theoretical
5.
J Environ Manage ; 129: 309-23, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23978619

ABSTRACT

Decision making in land management can be greatly enhanced if the perspectives of concerned stakeholders are taken into consideration. This often implies negotiation in order to reach an agreement based on the examination of multiple alternatives. This paper describes a spatial web/agent-based modeling system that was developed to support the negotiation process of stakeholders regarding land development in southern Alberta, Canada. This system integrates a fuzzy analytic hierarchy procedure within an agent-based model in an interactive visualization environment provided through a web interface to facilitate the learning and negotiation of the stakeholders. In the pre-negotiation phase, the stakeholders compare their evaluation criteria using linguistic expressions. Due to the uncertainty and fuzzy nature of such comparisons, a fuzzy Analytic Hierarchy Process is then used to prioritize the criteria. The negotiation starts by a development plan being submitted by a user (stakeholder) through the web interface. An agent called the proposer, which represents the proposer of the plan, receives this plan and starts negotiating with all other agents. The negotiation is conducted in a step-wise manner where the agents change their attitudes by assigning a new set of weights to their criteria. If an agreement is not achieved, a new location for development is proposed by the proposer agent. This process is repeated until a location is found that satisfies all agents to a certain predefined degree. To evaluate the performance of the model, the negotiation was simulated with four agents, one of which being the proposer agent, using two hypothetical development plans. The first plan was selected randomly; the other one was chosen in an area that is of high importance to one of the agents. While the agents managed to achieve an agreement about the location of the land development after three rounds of negotiation in the first scenario, seven rounds were required in the second scenario. The proposed web/agent-based model facilitates the interaction and learning among stakeholders when facing multiple alternatives.


Subject(s)
Conservation of Natural Resources/methods , Decision Making , Decision Support Techniques , Negotiating , Alberta , Humans , Internet , Models, Theoretical , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...