Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Res ; 9(2): 858-67, 2010 May 11.
Article in English | MEDLINE | ID: mdl-20467978

ABSTRACT

We determined the expression levels of DREB transcription factor (Gmdreb1) and of the genes Gmgols, Gmpip1b, Gmereb, and Gmdefensin in drought-tolerant (MG/BR46-Conquista) and drought-sensitive (BR16) genotypes of soybean, during drought. The trial was carried out in a controlled-environment chamber, set up to provide drought conditions. Sequences of Arabidopsis thaliana DREB-family proteins were used to build a phylogenetic tree through the alignment of the conserved regions near the AP2 domain. We found that Gmdreb1 is similar to Atrap2.1, which is located near the AtDREB1 and AtDREB2 families. The amplified fragment was cloned and sequenced; alignment with the sequence available at Genbank showed total similarity. Expression analysis showed that under drought: a) Gmdreb1 expression increased in leaves and roots of both genotypes and expression level changes occurred that were correlated with the length of the water-deficit period; b) there were increased expression levels of Gmdefensin in roots of MG/BR46; c) expression of Gmgols increased in leaves and roots of the two genotypes; d) Gmpip1b expression generally increased, except in roots of BR16, and e) the same was found for Gmereb, except in roots of MG/BR46.


Subject(s)
Glycine max/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cloning, Molecular , DNA Primers/genetics , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Techniques , Genotype , Phylogeny , Protein Structure, Tertiary , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Water/chemistry
2.
Curr Protein Pept Sci ; 11(3): 220-30, 2010 May.
Article in English | MEDLINE | ID: mdl-20088771

ABSTRACT

Defensin, thionin and lipid transfer protein (LTP) gene families, which antimicrobial activity has an attractive use in protein engineering and transgenic production of agronomical important plants, have been here functionally reviewed. Also, a transcriptional overview of a set of plant SuperSAGE libraries and analysis looking for 26 bp tags possibly annotated for those families is presented. Tags differentially expressed (p = 0.05) or constitutively transcribed were identified from leaves or roots SuperSAGE libraries from important Brazilian plant species [cowpea (Vigna unguiculata (L.) Walp.), soybean (Glycine max (L.) Merr.) and modern sugarcane hybrids (Saccharum spp.)] submitted to abiotic [salt (100 mM NaCl) or drought] or biotic stresses [fungus inoculation (Phakopsora pachyrhizi; Asiatic Soyben Rust phytopathogen)]. The diverse transcriptional patterns observed, probably related to the variable range of targets and functions involved, could be the first step to unravel the antimicrobial peptide world and the plant stress response relationship. Moreover, SuperSAGE opens the opportunity to find some SNPs or even rare transcript that could be important on plant stress resistance mechanisms. Putative defensin or LTP identified by SuperSAGE following a specific plant treatment or physiological condition could be useful for future use in genetic improvement of plants.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Plants/genetics , Amino Acid Sequence , Antimicrobial Cationic Peptides/chemistry , Base Sequence , Brazil , Computational Biology , Molecular Sequence Data , Plants/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...