Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mon Not R Astron Soc ; 485(4): 5777-5789, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31427830

ABSTRACT

We have developed the first gas-grain chemical model for oxygen fractionation (also including sulphur fractionation) in dense molecular clouds, demonstrating that gas-phase chemistry generates variable oxygen fractionation levels, with a particularly strong effect for NO, SO, O2, and SO2. This large effect is due to the efficiency of the neutral 18O + NO, 18O + SO, and 18O + O2 exchange reactions. The modeling results were compared to new and existing observed isotopic ratios in a selection of cold cores. The good agreement between model and observations requires that the gas-phase abundance of neutral oxygen atoms is large in the observed regions. The S16O/S18O ratio is predicted to vary substantially over time showing that it can be used as a sensitive chemical proxy for matter evolution in dense molecular clouds.

2.
Astron Astrophys ; 6222019 Feb 01.
Article in English | MEDLINE | ID: mdl-30820064

ABSTRACT

Young massive stars regulate the physical conditions, ionization, and fate of their natal molecular cloud and surroundings. It is important to find tracers that help quantifying the stellar feedback processes that take place at different spatial scales. We present ~85 arcmin2 (~1.3 pc2) velocity-resolved maps of several submillimeter molecular lines, taken with Herschel/HIFI, toward the closest high-mass star-forming region, the Orion molecular cloud 1 core (OMC-1). The observed rotational lines include probes of warm and dense molecular gas that are difficult, if not impossible, to detect from ground-based telescopes: CH+ (J = 1-0), CO (J = 10-9), HCO+ (J = 6-5) and HCN (J = 6-5), and CH (N, J =1, 3/2-1, 1/2). These lines trace an extended but thin layer (A V ≃3-6 mag or ~1016 cm) of molecular gas at high thermal pressure, P th = n H · T k ≈ 107 - 109 cm-3 K, associated with the far ultraviolet (FUV) irradiated surface of OMC-1. The intense FUV radiation field, emerging from massive stars in the Trapezium cluster, heats, compresses and photoevaporates the cloud edge. It also triggers the formation of specific reactive molecules such as CH+. We find that the CH+ (J = 1-0) emission spatially correlates with the flux of FUV photons impinging the cloud: G 0 from ~103 to ~105. This correlation is supported by constant-pressure photodissociation region (PDR) models in the parameter space P th/G 0 ≈ [5 · 103 - 8 · 104] cm-3 K where many observed PDRs seem to lie. The CH+ (J = 1-0) emission spatially correlates with the extended infrared emission from vibrationally excited H2 (v ≥ 1), and with that of [C ii] 158 µm and CO J = 10-9, all emerging from FUV-irradiated gas. These correlations link the presence of CH+ to the availability of C+ ions and of FUV-pumped H2 (v ≥ 1) molecules. We conclude that the parsec-scale CH+ emission and narrow-line (Δv ≃ 3 km s-1) mid-J CO emission arises from extended PDR gas and not from fast shocks. PDR line tracers are the smoking gun of the stellar feedback from young massive stars. The PDR cloud surface component in OMC-1, with a mass density of 120-240 M ⊙ pc-2, represents ~5% to ~10% of the total gas mass, however, it dominates the emitted line luminosity; the average CO J = 10-9 surface luminosity in the mapped region being ~35 times brighter than that of CO J = 2-1. These results provide insights into the source of submillimeter CH+ and mid-J CO emission from distant star-forming galaxies.

3.
Mon Not R Astron Soc ; 470(4): 4075-4088, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29142332

ABSTRACT

We report the detection of linear and cyclic isomers of C3H and C3H2 towards various starless cores and review the corresponding chemical pathways involving neutral (C3Hx with x=1,2) and ionic (C3Hx+ with x = 1,2,3) isomers. We highlight the role of the branching ratio of electronic Dissociative Recombination (DR) reactions of C3H2+ and C3H3+ isomers showing that the statistical treatment of the relaxation of C3H* and C3H2* produced in these DR reactions may explain the relative c,l-C3H and c,l-C3H2 abundances. We have also introduced in the model the third isomer of C3H2 (HCCCH). The observed cyclic-to-linear C3H2 ratio vary from 110 ± 30 for molecular clouds with a total density around 1×104 molecules.cm-3 to 30 ± 10 for molecular clouds with a total density around 4×105 molecules.cm-3, a trend well reproduced with our updated model. The higher ratio for low molecular cloud densities is mainly determined by the importance of the H + l-C3H2 → H + c-C3H2 and H + t-C3H2 → H + c-C3H2 isomerization reactions.

4.
Astrophys J Lett ; 830(1)2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27733899

ABSTRACT

The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T<10 K), has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modelling on COM chemistry at low temperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly-extinguished continuum peak with A V ≥30 mag within the inner 2700 au; and a low-density shell with average A V ~7.5-8 mag located at 4000 au from the core's center and bright in CH3OH. Our observations show that CH3O, CH3OCH3 and CH3CHO are more abundant (by factors ~2-10) toward the low-density shell than toward the continuum peak. Other COMs such as CH3OCHO, c-C3H2O, HCCCHO, CH2CHCN and HCCNC show slight enhancements (by factors ≤3) but the associated uncertainties are large. This suggests that COMs are actively formed and already present in the low-density shells of pre-stellar cores. The modelling of the chemistry of O-bearing COMs in L1544 indicates that these species are enhanced in this shell because i) CO starts freezing out onto dust grains driving an active surface chemistry; ii) the visual extinction is sufficiently high to prevent the UV photo-dissociation of COMs by the external interstellar radiation field; and iii) the density is still moderate to prevent severe depletion of COMs onto grains.

5.
Nature ; 537(7619): 207-209, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27509859

ABSTRACT

The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H2 vibrational emission (delineating the H/H2 transition) and the edge of the observed CO and HCO+ emission. This implies that the H/H2 and C+/C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.

6.
Mon Not R Astron Soc ; 456(4): 4101-4110, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-27013768

ABSTRACT

We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects.

7.
J Phys Chem A ; 117(39): 9959-67, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-23627602

ABSTRACT

CH2D+, the singly deuterated counterpart of CH3(+), offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3(+), and CH3(+). Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

8.
Nature ; 466(7309): 947-9, 2010 Aug 19.
Article in English | MEDLINE | ID: mdl-20725034

ABSTRACT

Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the 'pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of 'waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.


Subject(s)
Extraterrestrial Environment/chemistry , Stars, Celestial/chemistry , Infrared Rays , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...