Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(1): e52442, 2013.
Article in English | MEDLINE | ID: mdl-23300973

ABSTRACT

MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.


Subject(s)
Gene Expression Regulation , Heart/physiology , MicroRNAs/metabolism , RNA, Messenger/metabolism , Transcriptome , Animals , Cell Line , Chromosome Mapping/methods , Dogs , Female , Heart Valves/metabolism , Humans , In Situ Hybridization , Macaca fascicularis , Male , Myocardium/pathology , RNA Processing, Post-Transcriptional , Rats , Rats, Wistar , Species Specificity
2.
Toxicol Sci ; 131(2): 375-86, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23091169

ABSTRACT

The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for ß-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and ß-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.


Subject(s)
Biomarkers, Tumor/genetics , Genomic Imprinting , Intercellular Signaling Peptides and Proteins/genetics , Iodide Peroxidase/genetics , Liver Neoplasms, Experimental/genetics , Multigene Family , RNA, Untranslated/genetics , Animals , Calcium-Binding Proteins , Constitutive Androstane Receptor , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Polymerase Chain Reaction , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Transcriptome , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...