Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 11 09.
Article in English | MEDLINE | ID: mdl-36350292

ABSTRACT

From observations in rodents, it has been suggested that the cellular basis of learning-dependent changes, detected using structural MRI, may be increased dendritic spine density, alterations in astrocyte volume, and adaptations within intracortical myelin. Myelin plasticity is crucial for neurological function, and active myelination is required for learning and memory. However, the dynamics of myelin plasticity and how it relates to morphometric-based measurements of structural plasticity remains unknown. We used a motor skill learning paradigm in male mice to evaluate experience-dependent brain plasticity by voxel-based morphometry (VBM) in longitudinal MRI, combined with a cross-sectional immunohistochemical investigation. Whole-brain VBM revealed nonlinear decreases in gray matter volume (GMV) juxtaposed to nonlinear increases in white matter volume (WMV) within GM that were best modeled by an asymptotic time course. Using an atlas-based cortical mask, we found nonlinear changes with learning in primary and secondary motor areas and in somatosensory cortex. Analysis of cross-sectional myelin immunoreactivity in forelimb somatosensory cortex confirmed an increase in myelin immunoreactivity followed by a return towards baseline levels. Further investigations using quantitative confocal microscopy confirmed these changes specifically to the length density of myelinated axons. The absence of significant histological changes in cortical thickness suggests that nonlinear morphometric changes are likely due to changes in intracortical myelin for which morphometric WMV in somatosensory cortex significantly correlated with myelin immunoreactivity. Together, these observations indicate a nonlinear increase of intracortical myelin during learning and support the hypothesis that myelin is a component of structural changes observed by VBM during learning.


Subject(s)
Gray Matter , Motor Cortex , Male , Animals , Mice , Gray Matter/pathology , Cross-Sectional Studies , Rodentia , Magnetic Resonance Imaging , Motor Cortex/diagnostic imaging , Motor Cortex/pathology
2.
Neurotherapeutics ; 19(5): 1566-1587, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35917088

ABSTRACT

Sigma-1 receptor agonists have recently gained a great deal of interest due to their anti-amnesic, neuroprotective, and neurorestorative properties. Compounds such as PRE-084 or pridopidine (ACR16) are being studied as a potential treatment against cognitive decline associated with neurodegenerative disease, also to include Alzheimer's disease. Here, we performed in vitro experiments using primary neuronal cell cultures from rats to evaluate the abilities of ACR16 and PRE-084 to induce new synapses and spines formation, analyzing the expression of the possible genes and proteins involved. We additionally examined their neuroprotective properties against neuronal death mediated by oxidative stress and excitotoxicity. Both ACR16 and PRE-084 exhibited a concentration-dependent neuroprotective effect against NMDA- and H2O2-related toxicity, in addition to promoting the formation of new synapses and dendritic spines. However, only ACR16 generated dendritic spines involved in new synapse establishment, maintaining a more expanded activation of MAPK/ERK and PI3K/Akt signaling cascades. Consequently, ACR16 was also evaluated in vivo, and a dose of 1.5 mg/kg/day was administered intraperitoneally in APP/PS1 mice before performing the Morris water maze. ACR16 diminished the spatial learning and memory deficits observed in APP/PS1 transgenic mice via PI3K/Akt pathway activation. These data point to ACR16 as a pharmacological tool to prevent synapse loss and memory deficits associated with Alzheimer's disease, due to its neuroprotective properties against oxidative stress and excitotoxicity, as well as the promotion of new synapses and spines through a mechanism that involves AKT and ERK signaling pathways.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Mice , Animals , Rats , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phosphatidylinositol 3-Kinases/pharmacology , Phosphatidylinositol 3-Kinases/therapeutic use , Proto-Oncogene Proteins c-akt , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/therapeutic use , N-Methylaspartate/pharmacology , N-Methylaspartate/therapeutic use , Memory Disorders/metabolism , Mice, Transgenic , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Maze Learning
3.
Eur J Neurosci ; 55(5): 1356-1372, 2022 03.
Article in English | MEDLINE | ID: mdl-35080077

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a lethal and incurable neurodegenerative disease due to the loss of upper and lower motor neurons, which leads to muscle weakness, atrophy, and paralysis. Sigma-1 receptor (σ-1R) is a ligand-operated protein that exhibits pro-survival and anti-apoptotic properties. In addition, mutations in its codifying gene are linked to development of juvenile ALS pointing to an important role in ALS. Here, we investigated the disease-modifying effects of pridopidine, a σ-1R agonist, using a delayed onset SOD1 G93A mouse model of ALS. Mice were administered a continuous release of pridopidine (3.0 mg/kg/day) for 4 weeks starting before the appearance of any sign of muscle weakness. Mice were monitored weekly and several behavioural tests were used to evaluate muscle strength, motor coordination and gait patterns. Pridopidine-treated SOD1 G93A mice showed genotype-specific effects with the prevention of cachexia. In addition, these effects exhibited significant improvement of motor behaviour 5 weeks after treatment ended. However, the survival of the animals was not extended. In summary, these results show that pridopidine can modify the disease phenotype of ALS-associated cachexia and motor deficits in a SOD1 G93A mouse model.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Animals , Cachexia , Disease Models, Animal , Mice , Mice, Transgenic , Muscle Weakness , Phenotype , Piperidines , Superoxide Dismutase/genetics , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...