Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(12): e0226556, 2019.
Article in English | MEDLINE | ID: mdl-31869352

ABSTRACT

Bakanae disease, caused by the fungal phytopathogen Fusarium fujikuroi, can be detected in most rice (Oryza sativa L.) growing areas worldwide. In this study, we investigated the population structure of this fungus in southern Lao PDR, a country located near the geographic origin of rice domestication. Microsatellites (SSRs) and mating type (MAT) analyses, pathogenicity and fungicide sensitivity tests were integrated in the study. The first key finding is that the population genetic structure of F. fujikuroi in Lao PDR is consistent with high clonal reproduction. Indeed, (i) "true" clones were identified; (ii) within populations, MAT types were frequently skewed from 1:1 ratio, (iii) linkage disequilibrium (among SSRs as also among SSRs and MAT) was present, and (iv) gene-flow between opposite MAT types within the same population is restricted. The presence of genetic divergence among areas and populations and the occurrence of positive spatial autocorrelation of genetic variation, indicate that migration is restricted, and that genetic drift plays an important role in the evolution of this fungus. Two main well-defined groups of isolates were detected (FST = 0.213) that display a non-random spatial distribution. They differ in the ability to induce seedlings death but not seedlings elongation (the typical Bakanae symptom) suggesting that the pathogen's ability to induce the two symptoms is under different genetic control. Finally, we compared two agroecosystems with contrasting characteristics: low-input and traditional (Lao PDR) vs high-input and modern (Italy). We found differences in the level of population structuring and of spatial autocorrelation. This suggests that the evolutionary potential of the fungus not only depends on its intrinsic characteristics, but is strongly influenced by other external factors, most likely by the dynamics of infested seed exchange. Thus, quarantine and chemical treatments are a way to reduce population connectivity and hence the evolutionary potential of this pathogen.


Subject(s)
Clonal Evolution/genetics , Fusarium/genetics , Fusarium/pathogenicity , Genetic Variation , Oryza/microbiology , Demography , Evolution, Molecular , Fusarium/classification , Fusarium/growth & development , Genetic Drift , Laos , Oryza/growth & development , Phylogeny , Plant Diseases/microbiology , Rain , Seed Dispersal/physiology , Spores, Fungal/genetics , Spores, Fungal/pathogenicity
2.
Int J Food Microbiol ; 284: 1-10, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-29990634

ABSTRACT

Many foods and beverages in temperate and tropical regions are prone to contamination by ochratoxin A (OTA), one of the most harmful mycotoxins for human and animal health. Aspergillus ochraceus and Aspergillus carbonarius are considered among the main responsible for OTA contamination. We have previously demonstrated that four low or non- fermenting yeasts are able to control the growth and sporulation of OTA-producing Aspergilli both in vitro and on detached grape berries: the biocontrol effect was partly due to the release of volatile organic compounds (VOCs). Aiming to further characterise the effect of VOCs produced by biocontrol yeast strains, we observed that, beside vegetative growth and sporulation, the volatile compounds significantly reduced the production of OTA by two A. carbonarius and A. ochraceus isolates. Exposure to yeast VOCs also affected gene expression in both species, as confirmed by downregulation of polyketide synthase, non-ribosomal peptide synthase, monooxygenase, and the regulatory genes laeA and veA. The main compound of yeast VOCs was 2-phenylethanol, as detected by Headspace-Solid Phase Microextraction-Gas Chromatography-Tandem Mass Spectrometry (HS-SPME-GC-MS) analysis. Yeast VOCs represent a promising tool for the containment of growth and development of mycotoxigenic fungi, and a valuable aid to guarantee food safety and quality.


Subject(s)
Aspergillus/growth & development , Aspergillus/metabolism , Biological Control Agents/metabolism , Microbial Interactions/physiology , Mycotoxins/biosynthesis , Ochratoxins/biosynthesis , Volatile Organic Compounds/metabolism , Aspergillus/genetics , Fruit/microbiology , Gene Expression Regulation, Fungal/physiology , Humans , Mixed Function Oxygenases/biosynthesis , Peptide Synthases/biosynthesis , Phenylethyl Alcohol/isolation & purification , Polyketide Synthases/biosynthesis , Spores, Fungal/growth & development , Vitis/microbiology
3.
Mol Plant Pathol ; 13(9): 1149-55, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22897438

ABSTRACT

High-throughput methods are needed for functional genomics analysis in Fusarium culmorum, the cause of crown and foot rot on wheat and a type B trichothecene producer. Our aim was to develop and test the efficacy of a double-component system based on the ability of the impala transposase to transactivate the miniature inverted-repeat transposable element mimp1 of Fusarium oxysporum. We report, for the first time, the application of a tagging system based on a heterologous transposon and of splinkerette-polymerase chain reaction to identify mimp1 flanking regions in the filamentous fungus F. culmorum. Similar to previous observations in Fusarium graminearum, mimp1 transposes in F. culmorum by a cut-and-paste mechanism into TA dinucleotides, which are duplicated on insertion. mimp1 was reinserted in open reading frames in 16.4% (i.e. 10 of 61) of the strains analysed, probably spanning throughout the entire genome of F. culmorum. The effectiveness of the mimp1/impala double-component system for gene tagging in F. culmorum was confirmed phenotypically for a putative aurofusarin gene. This system also allowed the identification of two genes putatively involved in oxidative stress-coping capabilities in F. culmorum, as well as a sequence specific to this fungus, thus suggesting the valuable exploratory role of this tool.


Subject(s)
DNA Transposable Elements/genetics , Fusarium/genetics , Inverted Repeat Sequences/genetics , Triticum/microbiology , Blotting, Southern , Genes, Fungal/genetics , Mutagenesis, Insertional/genetics
4.
Int J Food Microbiol ; 98(2): 201-10, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15681047

ABSTRACT

The aim of this study was to test the suitability of the RT-PCR (reverse transcription-polymerase chain reaction) technique to differentiate aflatoxin-producing from aflatoxin-non-producing strains of Aspergillus flavus and Aspergillus parasiticus. Total RNAs of 13 strains grown under inducing yeast extract-sucrose (YES) and non-inducing yeast extract-peptone (YEP) media, respectively, were analyzed by using specific primers based on the conserved regions of nine structural genes (aflD, aflG, aflH, aflI, aflK, aflM, aflO, aflP, and aflQ) and two regulatory genes aflS and aflR of the aflatoxin B1 biosynthetic pathway. Transcription was confirmed by the expression of the beta-tubulin gene. The expression of the majority aflatoxin biosynthetic genes including aflR and aflS of all strains varied with regard to the aflatoxin-producing ability and the growth conditions. Nonetheless, we found that the expression profile of the three genes aflD, aflO, and aflP was consistently correlated with a strain's ability to produce aflatoxins or not in YES as well as the inability to produce aflatoxins in YEP. The devised RT-PCR profiling method reflects aflatoxin concentrations ranging from 0.1 to 60 microg/ml of the culture filtrates as determined by fluorescence HPLC. The results are discussed in relation to the suitability of RT-PCR as well as cDNA-based array techniques in diagnostic laboratory settings where individual isolates are being tested for potential toxin production to identify toxigenic isolates of Aspergillus species.


Subject(s)
Aflatoxins/genetics , Aspergillus/isolation & purification , RNA, Fungal/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Aflatoxins/analysis , Aspergillus/metabolism , Aspergillus flavus/isolation & purification , Aspergillus flavus/metabolism , Base Sequence , Chromatography, High Pressure Liquid , DNA, Complementary/analysis , Gene Amplification , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...