Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 14(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37893272

ABSTRACT

Cryogenic electron microscopy (Cryo-EM) has been established as one of the key players in structural biology. It can reconstruct a 3D model of a sample at a near-atomic resolution. With the increasing number of facilities, faster microscopes, and new imaging techniques, there is a growing demand for algorithms and programs able to process the so-called movie data produced by the microscopes in real time while preserving a high resolution and maximal information. In this article, we conduct a comparative analysis of the quality and performance of the most commonly used software for movie alignment. More precisely, we compare the most recent versions of FlexAlign (Xmipp v3.23.03), MotionCor2 (v1.6.4), Relion MotionCor (v4.0-beta), Warp (v1.0.9), and CryoSPARC (v4.0.3). We tested the quality of the alignment using generated phantom data, as well as real datasets, comparing the alignment precision, power spectra density, and performance scaling of each program.

2.
Zootaxa ; 5255(1): 93-100, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-37045265

ABSTRACT

Earthworm diversity and ecology in Pakistan is poorly known, especially in the region of Azad Jammu & Kashmir. An earthworm community survey assisted by genetic barcoding detected an unidentified species which could constitute a new record for Pakistan. Morphological study revealed its identity as Perelia kaznakovi. Additionally, Bayesian phylogenetic inference based on five mitochondrial and nuclear molecular markers was performed. Results provided a phylogenetic placement of the genus Perelia within Lumbricidae for the first time, indicating a close relationship with Eophila. This approach should be implemented to Perelia arnoldiana and further representatives of the genus in order to understand their biogeography, diversity and evolutionary history.


Subject(s)
Oligochaeta , Animals , Phylogeny , Oligochaeta/genetics , Pakistan , Bayes Theorem
3.
Zootaxa ; 5255(1): 68-81, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-37045267

ABSTRACT

Hormogastrid earthworms are found in the diversity hotspot of the Franco-Iberian domain, together with the better-known family Lumbricidae. Integrative systematics (the combination of morphological, molecular and ecological data) have increased our knowledge of the diversity and evolutionary history of these earthworms, highlighting unresolved taxonomic conflicts. One example of a species group in need of integrative taxonomic revision is the genus Boucheona in France. In this work, we analyzed their diversity using previously published data together with additional data obtained from recently sampled localities. Molecular data including DNA barcodes and additional markers enabled us to reconstruct Bayesian and time-calibrated phylogenies to discuss the evolutionary relationships among the different taxa, and to propose hypotheses regarding their biogeographical history. Based on our results, four species of Boucheona are present in Southern France, including two new taxa. Morphological distinctness and molecular phylogenetics results supported the status of four populations as the newly described Boucheona corbierensis sp. nov., as well as the status of "Hormogaster pretiosa var. nigra" as an independent species, redescribed as Boucheona tenebrae sp. nov. These results provide a new perspective of the importance of the genus Boucheona in southern France, as the possible evolutionary origin of a clade of giant anecic earthworms with unknown (but probably remarkable) impact on ecosystem functioning across their range.


Subject(s)
Oligochaeta , Animals , Oligochaeta/genetics , Ecosystem , Bayes Theorem , Biological Evolution , Phylogeny , France
6.
Zoology (Jena) ; 158: 126081, 2023 06.
Article in English | MEDLINE | ID: mdl-36871333

ABSTRACT

There is a gap in our knowledge of microorganization and the functioning of ovaries in earthworms (Crassiclitellata) and allied taxa. Recent analyses of ovaries in microdriles and leech-like taxa revealed that they are composed of syncytial germline cysts accompanied by somatic cells. Although the pattern of cyst organization is conserved across Clitellata - each cell is connected via one intercellular bridge (ring canal) to the central and anuclear cytoplasmic mass termed the cytophore - this system shows high evolutionary plasticity. In Crassiclitellata, only the gross morphology of ovaries and their segmental localization is well known, whereas ultrastructural data are limited to lumbricids like Dendrobaena veneta. Here we present the first report about ovarian histology and ultrastructure in Hormogastridae, a small family of earthworms inhabiting the western parts of the Mediterranean sea basin. We analyzed three species from three different genera and showed that the pattern of ovary organization is the same within this taxon. Ovaries are cone-like, with a broad part connected to the septum and a narrow distal end forming an egg string. Ovaries are composed of numerous cysts uniting a small number of cells, eight in Carpetania matritensis. There is a gradient of cysts development along the long ovary axis, and three zones can be distinguished. In zone I, cysts develop in complete synchrony and unite oogonia and early meiotic cells (till diplotene). Then (zone II), the synchrony is lost, and one cell (prospective oocyte) grows faster than the rest (prospective nurse cells). In zone III, oocytes pass the growth phase and gather nutrients; at this time, their contact with the cytophore is lost. Nurse cells grow slightly, eventually die via apoptosis, and are removed by coelomocytes. The most characteristic feature of hormogastrid germ cysts is the inconspicuous cytophore in the form of thread-like thin cytoplasmic strands (reticular cytophore). We found that the ovary organization in studied hormogastrids is very similar to that described for D. veneta and propose the term "Dendrobaena" type of ovaries. We expect the same microorganization of ovaries will be found in other hormogastrids and lumbricids.


Subject(s)
Oligochaeta , Ovary , Female , Animals , Ovary/anatomy & histology , Oligochaeta/anatomy & histology , Oogenesis , Oocytes , Germ Cells
7.
Biol Imaging ; 3: e13, 2023.
Article in English | MEDLINE | ID: mdl-38510163

ABSTRACT

Image-processing pipelines require the design of complex workflows combining many different steps that bring the raw acquired data to a final result with biological meaning. In the image-processing domain of cryo-electron microscopy single-particle analysis (cryo-EM SPA), hundreds of steps must be performed to obtain the three-dimensional structure of a biological macromolecule by integrating data spread over thousands of micrographs containing millions of copies of allegedly the same macromolecule. The execution of such complicated workflows demands a specific tool to keep track of all these steps performed. Additionally, due to the extremely low signal-to-noise ratio (SNR), the estimation of any image parameter is heavily affected by noise resulting in a significant fraction of incorrect estimates. Although low SNR and processing millions of images by hundreds of sequential steps requiring substantial computational resources are specific to cryo-EM, these characteristics may be shared by other biological imaging domains. Here, we present Scipion, a Python generic open-source workflow engine specifically adapted for image processing. Its main characteristics are: (a) interoperability, (b) smart object model, (c) gluing operations, (d) comparison operations, (e) wide set of domain-specific operations, (f) execution in streaming, (g) smooth integration in high-performance computing environments, (h) execution with and without graphical capabilities, (i) flexible visualization, (j) user authentication and private access to private data, (k) scripting capabilities, (l) high performance, (m) traceability, (n) reproducibility, (o) self-reporting, (p) reusability, (q) extensibility, (r) software updates, and (s) non-restrictive software licensing.

8.
Genes (Basel) ; 13(2)2022 02 11.
Article in English | MEDLINE | ID: mdl-35205381

ABSTRACT

In spite of the high conservation value of soil fauna, the evaluation of their conservation status has usually been neglected. This is more evident for earthworms, one of the most important ecosystem service providers in temperate habitats but rarely the subject of conservation research. These studies have not been developed in Western Europe, which comprises high diversity and several early-branching, relic genera. One potentially menaced representative of this fauna is Compostelandrilus cyaneus; this risk can be assessed by implementing potential distribution modeling and genetic diversity monitoring to their known populations. Genetic barcoding was performed in representatives of four populations (three of them newly sampled) in order to estimate genetic diversity and population genetics parameters. Ensemble species distribution models were built by combining several algorithms and using the five more relevant bioclimatic and soil variables as predictors. A large amount of genetic diversity was found in a small area of less than 20 km2, with populations located in less managed, better-preserved habitats showing higher genetic variability than populations isolated from natural habitats and surrounded by anthropic habitats. Potential distribution appears to be strongly restricted at a regional scale, and suitable habitats within the extent of occurrence appear fragmented and relatively limited. In addition, the main variables determining the ecological niche of C. cyaneus suggests a vulnerability to climate change and increasing soil compaction. Based on this knowledge, this species was assessed as Critically Endangered following the IUCN Red List of Threatened Species criteria, and some potential conservation actions are suggested.


Subject(s)
Ecosystem , Oligochaeta , Animals , Conservation of Natural Resources , Genetic Variation/genetics , Oligochaeta/genetics , Soil
9.
Sci Total Environ ; 817: 152749, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-34990683

ABSTRACT

Nowadays, extreme weather events caused by climate change are becoming more frequent. This leads to the occurrence of extreme habitats to which species must adapt. This challenge becomes crucial for species living in unstable environments, such as the riparian earthworm Eiseniella tetraedra. Its cosmopolitan distribution exposes it to various environmental changes, such as freezing in subarctic regions or droughts in Mediterranean areas. Transcriptional changes under cold and desiccation conditions could therefore shed light on the adaptive mechanisms of this species. An experiment was performed for each condition. In the cold experiment, the temperature was lowered to -14 °C ± 2 °C (compared to 8 °C for control samples), and in the desiccation treatment, humidity was lowered from 60% to 15%. Comparisons of gene expression levels between earthworms under freezing conditions and control earthworms revealed a total of 84 differentially expressed genes and comparisons between the desiccation experiment and the control yielded 163 differentially expressed genes. However, no common responses were found between the two treatments. The results suggest that E. tetraedra can acclimate to low temperatures due to the upregulation of genes involved in glucose accumulation. However, downregulation of the respiratory chain suggests that this earthworm does not tolerate freezing conditions. Under desiccation conditions, genes involved in cell protection from apoptosis and DNA repair were upregulated. In contrast, lipid metabolism was downregulated, presumably to conserve resources by reducing the rate at which they are consumed.


Subject(s)
Oligochaeta , Animals , Cold Temperature , Freezing , Oligochaeta/genetics , Stress, Physiological , Transcriptome
10.
PLoS One ; 16(9): e0255978, 2021.
Article in English | MEDLINE | ID: mdl-34473718

ABSTRACT

The Massif Central in France could potentially harbor numerous ancient endemic lineages owing to its long history of continuous geological stability. Several endemic earthworm species inhabit the area, with Allolobophora (Gatesona) chaetophora, Helodrilus (Acystodrilus) and Avelona ligra showing hints of a common evolutionary origin. However, the phylogenetic relationships and taxonomic status of the species remain to be studied through integrative molecular and morphological methods. To this end, eight species including most of the known species and subspecies of All. (Gatesona), Helodrilus (Acystodrilus) musicus, and Avelona ligra were sequenced for a set of five molecular markers. The species were grouped on the basis of the molecular findings in a phylogenetic framework. All. (Gatesona) was included within the same clade as Helodrilus (Acystodrilus) and Avelona, separated from Allolobophora sensu stricto, supporting its status as a good genus. Branch lengths and average pairwise genetic distances suggested the subspecies of All. (Gatesona) chaetophora examined should be considered species-level taxa. Thus, a generic diagnosis for Gatesona stat. nov. is provided, along with redescriptions of Gatesona chaetophora comb. nov., Gatesona rutena comb. nov. stat. nov., Gatesona lablacherensis comb. nov. stat. nov. and Gatesona serninensis comb. nov. stat. nov. The study findings highlight the need for further sampling of earthworm diversity in the Massif Central (and Southern France), in addition to an increased focus on the Eastern European species of Helodrilus.


Subject(s)
Oligochaeta/genetics , Sequence Analysis, DNA/methods , Animals , Biological Evolution , Ecosystem , France , Oligochaeta/metabolism , Phylogeny
11.
Mol Phylogenet Evol ; 146: 106767, 2020 05.
Article in English | MEDLINE | ID: mdl-32081763

ABSTRACT

Uncovering the genetic and evolutionary basis of cryptic speciation is a major focus of evolutionary biology. Next Generation Sequencing (NGS) allows the identification of genome-wide local adaptation signatures, but has rarely been applied to cryptic complexes - particularly in the soil milieu - as it is the case with integrative taxonomy. The earthworm genus Carpetania, comprising six previously suggested putative cryptic lineages, is a promising model to study the evolutionary phenomena shaping cryptic speciation in soil-dwelling lineages. Genotyping-By-Sequencing (GBS) was used to provide genome-wide information about genetic variability between 17 populations, and geometric morphometrics analyses of genital chaetae were performed to investigate unexplored cryptic morphological evolution. Genomic analyses revealed the existence of three cryptic species, with half of the previously-identified potential cryptic lineages clustering within them. Local adaptation was detected in more than 800 genes putatively involved in a plethora of biological functions (most notably reproduction, metabolism, immunological response and morphogenesis). Several genes with selection signatures showed shared mutations for each of the cryptic species, and genes under selection were enriched in functions related to regulation of transcription, including SNPs located in UTR regions. Finally, geometric morphometrics approaches partially confirmed the phylogenetic signal of relevant morphological characters such as genital chaetae. Our study therefore unveils that local adaptation and regulatory divergence are key evolutionary forces orchestrating genome evolution in soil fauna.


Subject(s)
Annelida/classification , Genetic Speciation , Animals , Annelida/anatomy & histology , Annelida/genetics , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Phylogeny , Soil
12.
Zootaxa ; 4496(1): 65-95, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30313686

ABSTRACT

The earthworm family Hormogastridae is a relatively diverse group in the Western Mediterranean basin. Since 1887, around thirty species have been described and assigned to four genera. However, from 2010 on, molecular, ecological and morphological studies have questioned the validity of those genera. Meanwhile, new species were discovered and assigned to them, pending a formal systematic revision; such a revision has been performed recently by integrating all the existing sources of information. The resulting classification consists of nine genera, including four newly erected ones. This revised systematic background is used in the current work as a base for the description of six new hormogastrid species: Diazcosinia sacrarium Marchán, Fernández, Díaz Cosín Novo, sp. nov., Boucheona martae Marchán, Fernández Díaz Cosín, sp. nov., Boucheona rosae Marchán, Díaz Cosín Novo, sp. nov., Norana emiliae Marchán, Fernández, Díaz Cosín Novo, sp. nov., Norana xylocerasi Marchán, Fernández, Díaz Cosín Novo, sp. nov., and Norana beatrizae Marchán, Fernández, Díaz Cosín Novo, sp. nov. Norana is a new replacement name for the preoccupied Nora Marchán, Fernández, Díaz Cosín Novo, 2018. Likewise, Xanina is proposed to replace the preoccupied Xana Díaz Cosín, Briones Trigo, 1989. We provide an overview of the currently known diversity of the different genera, and we further propose common names in several languages for some of the species of Hormogastridae.


Subject(s)
Oligochaeta , Animals
13.
Zootaxa ; 4496(1): 43-64, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30313685

ABSTRACT

DNA barcoding of 172 anecic Octodrilus specimens collected in NE Italy and bordering Croatia has been carried out. The Bayesian phylogenetic tree showed high support for almost all currently recognized species, however, some unexpected results also appeared. The clade representing Oc. pseudocomplanatus contains a highly advanced subclade, which morphologically resembles Oc. slovenicus. The highly supported Oc. tergestinus clade consists of four unresolved divergent lineages of which the first corresponds to Oc. istrianus and the second resembles Oc. mimus morphologically; the third and fourth clades show typical tergestinus characters. The widely distributed Oc. complanatus consists of three highly divergent subclades which are sister to a new species, Oc. zicsiniello sp. nov., hereunder described.


Subject(s)
DNA Barcoding, Taxonomic , Oligochaeta , Phylogeny , Animals , Bayes Theorem , Croatia , Farms , Forests , Italy
14.
Mol Phylogenet Evol ; 112: 185-193, 2017 07.
Article in English | MEDLINE | ID: mdl-28487260

ABSTRACT

Spatial and temporal aspects of the evolution of cryptic species complexes have received less attention than species delimitation within them. The phylogeography of the cryptic complex Hormogaster elisae (Oligochaeta, Hormogastridae) lacks knowledge on several aspects, including the small-scale distribution of its lineages or the palaeogeographic context of their diversification. To shed light on these topics, a dense specimen collection was performed in the center of the Iberian Peninsula - resulting in 28 new H. elisae collecting points, some of them as close as 760m from each other- for a higher resolution of the distribution of the cryptic lineages and the relationships between the populations. Seven molecular regions were amplified: mitochondrial subunit 1 of cytochrome c oxidase (COI), 16S rRNA and tRNA Leu, Ala, and Ser (16S t-RNAs), one nuclear ribosomal gene (a fragment of 28S rRNA) and one nuclear protein-encoding gene (histone H3) in order to infer their phylogenetic relationships. Different representation methods of the pairwise divergence in the cytochrome oxidase I sequence (heatmap and genetic landscape graphs) were used to visualize the genetic structure of H. elisae. A nested approach sensu Mairal et al. (2015) (connecting the evolutionary rates of two datasets of different taxonomic coverage) was used to obtain one approximation to a time-calibrated phylogenetic tree based on external Clitellata fossils and a wide molecular dataset. Our results indicate that limited active dispersal ability and ecological or biotic barriers could explain the isolation of the different cryptic lineages, which never co-occur. Rare events of long distance dispersal through hydrochory appear as one of the possible causes of range expansion.


Subject(s)
Oligochaeta/classification , Oligochaeta/genetics , Phylogeography , Animals , Bayes Theorem , Calibration , Electron Transport Complex IV/genetics , Genetic Variation , Haplotypes/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Transfer/genetics , Spain , Time Factors
15.
Mol Phylogenet Evol ; 94(Pt B): 473-478, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26522608

ABSTRACT

Earthworm taxonomy and evolutionary biology remain a challenge because of their scarce distinct morphological characters of taxonomic value, the morphological convergence by adaptation to the uniformity of the soil where they inhabit, and their high plasticity when challenged with stressful or new environmental conditions. Here we present a phylogenomic study of the family Hormogastridae, representing also the first piece of work of this type within earthworms. We included seven transcriptomes of the group representing the main lineages as previously-described, analysed in a final matrix that includes twelve earthworms and eleven outgroups. While there is a high degree of gene conflict in the generated trees that obscure some of the internal relationships, the origin of the family is well resolved: the hormogastrid Hemigastrodrilus appears as the most ancestral group, followed by the ailoscolecid Ailoscolex, therefore rejecting the validity of the family Ailoscolecidae. Our results place the origin of hormogastrids in Southern France, as previously hypothesised.


Subject(s)
Oligochaeta/classification , Animals , Biological Evolution , Environment , France , Phylogeny , Soil
16.
Mol Phylogenet Evol ; 94(Pt B): 701-708, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26299880

ABSTRACT

Comparative phylogeography of widespread species that span the same geographic areas can elucidate the influence of historical events on current patterns of biodiversity, identify patterns of co-vicariance, and therefore aid the understanding of general evolutionary processes. Soil-dwelling animals present characteristics that make them suitable for testing the effect of the palaeogeographical events on their distribution and diversification, such as their low vagility and population structure. In this study, we shed light on the spatial lineage diversification and cladogenesis of two widely-distributed cosmopolitan and invasive earthworms (Aporrectodea rosea and A. trapezoides) in their putative ancestral area of origin, the Western Palearctic, and a few populations in North America. Molecular analyses were conducted on mitochondrial and nuclear markers from 220 (A. rosea) and 198 (A. trapezoides) individuals collected in 56 and 57 localities, respectively. We compared the lineage diversification pattern, genetic variability and cladogenesis in both species. Our findings showed that both species underwent a similar diversification from the Western Mediterranean plates to (i) Northern Europe and (ii) the Iberian Peninsula, establishing their two main lineages. Their diversification was in concordance with the main palaeogeographical events in the Iberian Peninsula and Western Mediterranean, followed by a later colonization of North America from individuals derived exclusively from the Eurosiberian lineage. Their diversification occurred at different times, with the diversification of A. rosea being potentially more ancient. Cladogenesis in both species seems to have been modelled only by the Mediterranean plate shifts, ignoring historical climatic oscillations such as the Messinian salinity crisis. Their high genetic variability, strong population structure, lack of gene flow and stepping-stone-like cladogenesis suggest the existence of different cryptic lineages. Our results may indicate a recurrent event in invasive earthworms within their ancestral distribution areas in the Western Palearctic.


Subject(s)
Genetic Variation , Oligochaeta/classification , Animals , Biodiversity , DNA, Mitochondrial/genetics , Europe , Gene Flow , Genetic Speciation , North America , Oligochaeta/genetics , Phylogeny , Phylogeography/methods , RNA, Ribosomal/genetics
17.
Zookeys ; (414): 1-17, 2014.
Article in English | MEDLINE | ID: mdl-25009415

ABSTRACT

The earthworm family Hormogastridae shows a remarkable disjunction in its distribution in the Iberian Peninsula, with the Hormogaster elisae species complex isolated from the rest of the species. Hormogaster joseantonioi sp. n., a new species found in the intermediate area between the main ranges (in Teruel, Aragón), was described following the integrative approach, as it is suitable for earthworms due to their highly homoplasic morphology. The phylogenetic analysis of the molecular markers placed the new species as a sister taxon to H. elisae, thus showing the colonizing lineage of Central Iberian Peninsula could have originated near the H. joseantonioi sp. n. current range. External morphological characters revealed some degree of overlap with previously described species, but internal characters presented configurations/states unknown from other members of the family. These traits make the new species a key piece to understand the evolution of Hormogastridae.

18.
Zookeys ; (399): 71-87, 2014.
Article in English | MEDLINE | ID: mdl-24843253

ABSTRACT

The morphological and anatomical simplicity of soil dwelling animals, such as earthworms, has limited the establishment of a robust taxonomy making it sometimes subjective to authors' criteria. Within this context, integrative approaches including molecular information are becoming more popular to solve the phylogenetic positioning of conflictive taxa. Here we present the description of a new lumbricid species from the region of Extremadura (Spain), Eiseniona gerardoi sp. n. The assignment to this genus is based on both a morphological and a phylogenetic study. The validity of the genus Eiseniona, one of the most controversial within Lumbricidae, is discussed. A synopsis of the differences between the type species and the west-European members of the genus is provided.

19.
Zookeys ; (242): 1-16, 2012.
Article in English | MEDLINE | ID: mdl-23378793

ABSTRACT

Conflict among data sources can be frequent in evolutionary biology, especially in cases where one character set poses limitations to resolution. Earthworm taxonomy, for example, remains a challenge because of the limited number of morphological characters taxonomically valuable. An explanation to this may be morphological convergence due to adaptation to a homogeneous habitat, resulting in high degrees of homoplasy. This sometimes impedes clear morphological diagnosis of species. Combination of morphology with molecular techniques has recently aided taxonomy in many groups difficult to delimit morphologically. Here we apply an integrative approach by combining morphological and molecular data, including also some ecological features, to describe a new earthworm species in the family Hormogastridae, Hormogaster abbatissaesp. n., collected in Sant Joan de les Abadesses (Girona, Spain). Its anatomical and morphological characters are discussed in relation to the most similar Hormogastridae species, which are not the closest species in a phylogenetic analysis of molecular data. Species delimitation using the GMYC method and genetic divergences with the closest species are also considered. The information supplied by the morphological and molecular sources is contradictory, and thus we discuss issues with species delimitation in other similar situations. Decisions should be based on a profound knowledge of the morphology of the studied group but results from molecular analyses should also be considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...