Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Bioeng Biotechnol ; 11: 1247802, 2023.
Article in English | MEDLINE | ID: mdl-38053848

ABSTRACT

Arming oncolytic viruses with transgenes encoding immunomodulators improves their therapeutic efficacy by enhancing and/or sustaining the innate and adaptive anti-tumoral immune responses. We report here the isolation, selection, and vectorization of a blocking anti-human PDL1 single-domain antibody (sdAb) isolated from PDL1-immunized alpacas. Several formats of this sdAb were vectorized into the vaccinia virus (VV) and evaluated for their programmed cell death protein 1 (PD1)/PD1 ligand (PDL1) blocking activity in the culture medium of tumor cells infected in vitro. In those conditions, VV-encoded homodimeric sdAb generated superior PDL1 blocking activity compared to a benchmark virus encoding full-length avelumab. The sdAb was further used to design simple, secreted, and small tumor necrosis factor superfamily (TNFSF) fusions with the ability to engage their cognate receptors (TNFRSF) only in the presence of PDL1-positive cells. Finally, PDL1-independent alternatives of TNFRSF agonists were also constructed by fusing different variants of surfactant protein-D (SP-D) oligomerization domains with TNFSF ectodomains. An optimal SP-D-CD40L fusion with an SP-D collagen domain reduced by 80% was identified by screening with a transfection/infection method where poxvirus transfer plasmids and vaccinia virus were successively introduced into the same cell. However, once vectorized in VV, this construct had a much lower CD40 agonist activity compared to the SP-D-CD40L construct, which is completely devoid of the collagen domain that was finally selected. This latest result highlights the importance of working with recombinant viruses early in the payload selection process. Altogether, these results bring several complementary solutions to arm oncolytic vectors with powerful immunomodulators to improve their immune-based anti-tumoral activity.

2.
Int Orthop ; 47(10): 2439-2448, 2023 10.
Article in English | MEDLINE | ID: mdl-36961530

ABSTRACT

PURPOSE: Although the mechanisms of injury are similar to ACL rupture in adults, publications dealing with meniscal lesions resulting from fractures of the intercondylar eminence in children are much rarer. The main objective was to measure the frequency of meniscal lesions associated with tibial eminence fractures in children. The second question was to determine whether there is any available evidence on association between meniscal tears diagnostic method, and frequencies of total lesions, total meniscal lesions, and total entrapments. METHODS: A comprehensive literature search was performed using PubMed and Scopus. Articles were eligible for inclusion if they reported data on intercondylar tibial fracture, or tibial spine fracture, or tibial eminence fracture, or intercondylar eminence fracture. Article selection was performed in accordance with the PRISMA guidelines. RESULTS: In total, 789 studies were identified by the literature search. At the end of the process, 26 studies were included in the final review. This systematic review identified 18.1% rate of meniscal tears and 20.1% rate of meniscal or IML entrapments during intercondylar eminence fractures. Proportion of total entrapments was significantly different between groups (17.8% in the arthroscopy group vs. 6.2% in the MRI group; p < .0001). Also, we found 20.9% of total associated lesions in the arthroscopy group vs. 26.1% in the MRI group (p = .06). CONCLUSION: Although incidence of meniscal injuries in children tibial eminence fractures is lower than that in adults ACL rupture, pediatric meniscal tears and entrapments need to be systematically searched. MRI does not appear to provide additional information about the entrapment risk if arthroscopy treatment is performed. However, pretreatment MRI provides important informations about concomitant injuries, such as meniscal tears, and should be mandatory if orthopaedic treatment is retained. MRI modalities have yet to be specified to improve the diagnosis of soft tissues entrapments. STUDY DESIGN: Systematic review of the literature REGISTRATION: PROSPERO N° CRD42021258384.


Subject(s)
Anterior Cruciate Ligament Injuries , Knee Fractures , Knee Injuries , Meniscus , Tibial Fractures , Adult , Humans , Child , Retrospective Studies , Magnetic Resonance Imaging , Knee Injuries/diagnostic imaging , Knee Injuries/epidemiology , Knee Injuries/surgery , Tibial Fractures/diagnostic imaging , Tibial Fractures/epidemiology , Tibial Fractures/surgery , Arthroscopy/methods , Anterior Cruciate Ligament Injuries/diagnostic imaging , Anterior Cruciate Ligament Injuries/epidemiology , Anterior Cruciate Ligament Injuries/surgery
3.
Front Immunol ; 13: 939899, 2022.
Article in English | MEDLINE | ID: mdl-36045686

ABSTRACT

A majority of patients with sepsis surviving the first days in intensive care units (ICU) enter a state of immunosuppression contributing to their worsening. A novel virotherapy based on the non-propagative Modified Virus Ankara (MVA) expressing the human interleukin-7 (hIL-7) cytokine fused to an Fc fragment, MVA-hIL-7-Fc, was developed and shown to enhance innate and adaptive immunity and confer survival advantages in murine sepsis models. Here, we assessed the capacity of hIL-7-Fc produced by the MVA-hIL-7-Fc to improve ex vivo T lymphocyte functions from ICU patients with sepsis. Primary hepatocytes were transduced with the MVA-hIL-7-Fc or an empty MVA, and cell supernatants containing the secreted hIL-7-Fc were harvested for in vitro and ex vivo studies. Whole blood from ICU patients [septic shock = 15, coronavirus disease 2019 (COVID-19) = 30] and healthy donors (n = 36) was collected. STAT5 phosphorylation, cytokine production, and cell proliferation were assessed upon T cell receptor (TCR) stimulation in presence of MVA-hIL-7-Fc-infected cell supernatants. Cells infected by MVA-hIL-7-Fc produced a dimeric, glycosylated, and biologically active hIL-7-Fc. Cell supernatants containing the expressed hIL-7-Fc triggered the IL-7 pathway in T lymphocytes as evidenced by the increased STAT5 phosphorylation in CD3+ cells from patients and healthy donors. The secreted hIL-7-Fc improved Interferon-γ (IFN-γ) and/or Tumor necrosis factor-α (TNF-α) productions and CD4+ and CD8+ T lymphocyte proliferation after TCR stimulation in patients with bacterial and viral sepsis. This study demonstrates the capacity of the novel MVA-hIL-7-Fc-based virotherapy to restore ex vivo T cells immune functions in ICU patients with sepsis and COVID-19, further supporting its clinical development.


Subject(s)
COVID-19 , Sepsis , Shock, Septic , Animals , COVID-19/therapy , Critical Illness , Cytokines/metabolism , Humans , Interleukin-7/metabolism , Mice , Receptors, Antigen, T-Cell/metabolism , STAT5 Transcription Factor/metabolism , Sepsis/therapy
4.
J Immunol ; 209(1): 99-117, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35667841

ABSTRACT

Persistence of an immunosuppressive state plays a role in septic patient morbidity and late mortality. Both innate and adaptive pathways are impaired, pointing toward the need for immune interventions targeting both arms of the immune system. We developed a virotherapy using the nonpropagative modified vaccinia virus Ankara (MVA), which harbors the intrinsic capacity to stimulate innate immunity, to deliver IL-7, a potent activator of adaptive immunity. The rMVA-human IL-7 (hIL-7)-Fc encoding the hIL-7 fused to the human IgG2-Fc was engineered and shown to express a dimeric, glycosylated, and biologically active cytokine. Following a single i.v. injection in naive mice, the MVA-hIL-7-Fc increased the number of total and activated B, T, and NK cells but also myeloid subpopulations (Ly6Chigh, Ly6Cint, and Ly6Cneg cells) in both lung and spleen. It triggered differentiation of T cells in central memory, effector memory, and acute effector phenotypes and enhanced polyfunctionality of T cells, notably the number of IFN-γ-producing cells. The MVA vector contributed significantly to immune cell activation, particularly of NK cells. The MVA-hIL-7-Fc conferred a significant survival advantage in the cecal ligation and puncture (CLP) and Candida albicans sepsis models. It significantly increased cell numbers and activation in both spleen and lung of CLP mice. Comparatively, in naive and CLP mice, the rhIL-7-Fc soluble counterpart overall induced less vigorous, shorter lasting, and narrower immune activities than did the MVA-hIL-7-Fc and favored TNF-α-producing cells. The MVA-hIL-7-Fc represents a novel class of immunotherapeutic with clinical potential for treatment of septic patients.


Subject(s)
Interleukin-7 , Sepsis , Adaptive Immunity , Animals , Immunity, Innate , Immunologic Factors , Immunotherapy , Mice , Sepsis/therapy , T-Lymphocytes , Vaccinia virus
5.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-35058324

ABSTRACT

BACKGROUND: Immune checkpoint blockade (ICB) is a clinically proven concept to treat cancer. Still, a majority of patients with cancer including those with poorly immune infiltrated 'cold' tumors are resistant to currently available ICB therapies. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is one of few clinically validated targets for ICB, but toxicities linked to efficacy in approved αCTLA-4 regimens have restricted their use and precluded full therapeutic dosing. At a mechanistic level, accumulating preclinical and clinical data indicate dual mechanisms for αCTLA-4; ICB and regulatory T cell (Treg) depletion are both thought to contribute efficacy and toxicity in available, systemic, αCTLA-4 regimens. Accordingly, strategies to deliver highly effective, yet safe αCTLA-4 therapies have been lacking. Here we assess and identify spatially restricted exposure to a novel strongly Treg-depleting, checkpoint-blocking, vectorized αCTLA-4, as a highly efficacious and potentially safe strategy to target CTLA-4. METHODS: A novel human IgG1 CTLA-4 antibody (4-E03) was identified using function-first screening for monoclonal antibodies (mAbs) and targets associated with superior Treg-depleting activity. A tumor-selective oncolytic vaccinia vector was then engineered to encode this novel, strongly Treg-depleting, checkpoint-blocking, αCTLA-4 antibody or a matching surrogate antibody, and Granulocyte-macrophage colony-stimulating factor (GM-CSF) (VVGM-αCTLA-4). RESULTS: The identified 4-E03 antibody showed significantly stronger Treg depletion, but equipotent checkpoint blockade, compared with clinically validated αCTLA-4 ipilimumab against CTLA-4-expressing Treg cells in a humanized mouse model in vivo. Intratumoral administration of VVGM-αCTLA-4 achieved tumor-restricted CTLA-4 receptor saturation and Treg depletion, which elicited antigen cross-presentation and stronger systemic expansion of tumor-specific CD8+ T cells and antitumor immunity compared with systemic αCTLA-4 antibody therapy. Efficacy correlated with FcγR-mediated intratumoral Treg depletion. Remarkably, in a clinically relevant mouse model resistant to systemic ICB, intratumoral VVGM-αCTLA-4 synergized with αPD-1 to reject cold tumors. CONCLUSION: Our findings demonstrate in vivo proof of concept for spatial restriction of Treg depletion-optimized immune checkpoint blocking, vectorized αCTLA-4 as a highly effective and safe strategy to target CTLA-4. A clinical trial evaluating intratumoral VVGM-αhCTLA-4 (BT-001) alone and in combination with αPD-1 in metastatic or advanced solid tumors has commenced.


Subject(s)
Antigen Presentation/immunology , CTLA-4 Antigen/metabolism , Immune Checkpoint Inhibitors/therapeutic use , T-Lymphocytes, Regulatory/immunology , Animals , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Humans , Immune Checkpoint Inhibitors/pharmacology , Male , Mice
6.
J Virol ; 93(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30918073

ABSTRACT

In this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676-8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitro replication, oncolytic activities in vitro and in vivo, and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile.IMPORTANCE The vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.


Subject(s)
B7-1 Antigen/metabolism , B7-H1 Antigen/metabolism , Vaccinia virus/metabolism , Animals , Antigens, CD/metabolism , B7-1 Antigen/genetics , B7-2 Antigen/genetics , B7-2 Antigen/metabolism , CD28 Antigens/metabolism , CTLA-4 Antigen/metabolism , Cell Adhesion Molecules , Cell Line , Chick Embryo , Humans , Immunoconjugates , Interleukin-2/metabolism , Lymphocyte Activation/immunology , Membrane Glycoproteins/metabolism , Mice , NF-kappa B/metabolism , Vaccinia/genetics , Vaccinia/metabolism , Vaccinia virus/genetics , Viral Proteins/metabolism
7.
Int J Psychoanal ; 100(2): 206-228, 2019 Apr.
Article in English | MEDLINE | ID: mdl-33952173

ABSTRACT

Although transgenderism is accorded an increasingly important place at the heart of studies concerning problems of gender nonconformity, it remains a phenomenon that is poorly known, and difficult to define, in particular in its relationship with transsexualism. In fact, in spite of an undeniable kinship between them, these two phenomena can be distinguished one from the other, and each represents a way of relating to the subject of the difference between the sexes. To clarify this subject, this article initially presents their emergence, their commonalities and their differences from a historical point of view. Next, both ways of relating to the difference between the sexes are analysed through two clinical case studies, one of transsexualism and one of transgenderism (from extracts of non-directive clinical interviews, as well as data from the Rorschach test and the Thematic Apperception Test [TAT], analysed by the French psychoanalytic method). At the end of this investigation, it is concluded that the distinction between these two phenomena refers to two abstractions of the difference between the sexes, leading to a transformation that can be pictured as a fulfilment driven by this perception.

8.
PLoS One ; 13(5): e0196815, 2018.
Article in English | MEDLINE | ID: mdl-29718990

ABSTRACT

Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host's immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.


Subject(s)
Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Viral Vaccines/therapeutic use , Drug Therapy, Combination , Enzyme-Linked Immunosorbent Assay , Humans , Treatment Outcome , Tuberculosis, Multidrug-Resistant/drug therapy , Vaccines, DNA , Viral Vaccines/genetics
9.
Oncoimmunology ; 5(10): e1220467, 2016.
Article in English | MEDLINE | ID: mdl-27853644

ABSTRACT

We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro. Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8+ and CD4+). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs.

10.
Knee Surg Sports Traumatol Arthrosc ; 24(9): 2998-3004, 2016 Sep.
Article in English | MEDLINE | ID: mdl-25912072

ABSTRACT

PURPOSE: Hamstring tendons are commonly used as a graft source for ACL reconstruction. This study seeks to determine whether either the diameter of the tendon graft or the age of the patient influences the outcome of the ACL reconstruction when measured using a standard, previously validated laxity measurement device. METHODS: This is a retrospective study of 88 patients who underwent ACL reconstruction with a short, quadrupled tendon technique, using the semitendinosus ± gracilis tendons. Patients included in this study were sequential, unilateral, complete ACL ruptures. The patients were followed for a minimum of 1 year postoperatively, with a mean follow-up of 26 months. Patients were divided into three groups according to the diameter (Ø) of the graft: group 1 (32 patients): 8 mm ≤ Ø ≤ 9 mm; group 2 (28 patients): 9 mm < Ø ≤ 10 mm; and group 3 (28 patients): Ø > 10 mm. Three groups with differential laxity at 134 N (Δ134 = healthy side vs. operated side) measured with the laximeter GNRB(®) were compared. The risk of residual laxity (OR) between the three groups taking age, gender, BMI and meniscus status into account was calculated. A side-to-side laxity >3 mm was considered as a residual laxity. RESULTS: The mean patient age at the time of reconstruction was 29.4 years. The three groups were comparable. Postoperative Δ134 was 1.50 ± 1.3, 1.59 ± 1.5 and 2 ± 1.7 mm for groups 1 through 3, respectively. Δ134 > 3 mm was observed in three patients in group 1, four patients in group 2 and nine patients in group 3. As compared to group 1, OR was 1.46 (95 % CI 0.35-6.05) and 3.31 (95 % CI 0.89-12.34) in groups 2 and 3, respectively. Adjustment for age, gender, BMI and meniscus did not change the estimates [OR 1.44 (95 % CI 0.34-6.16) and 3.92 (95 % CI 1-15.37)] in groups 2 and 3, respectively. Patients younger than 20 had a significantly higher average postoperative laximetry (2.4 ± 1.5 mm) compared to those aged 20 years and over (1.5 ± 1.5 mm) (p = 0.03), regardless of the diameter of the graft. CONCLUSION: The diameter of the graft between 8 and 10 mm does not affect the laximetric results of an ACL reconstruction. Therefore, there does not appear to be a benefit to harvesting and adding further tissue to increase the diameter of the graft above 10 mm. Patients younger than 20 represent a population at risk of graft elongation. In these patients at risk, postoperative management needs to be modified (delayed weight bearing, articulated splinting, slower rehabilitation) in the first months. LEVEL OF EVIDENCE: Retrospective case series, Level IV.


Subject(s)
Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction/methods , Tendons/anatomy & histology , Tendons/transplantation , Adult , Age Factors , Anterior Cruciate Ligament Reconstruction/adverse effects , Female , Humans , Joint Instability/etiology , Male , Middle Aged , Postoperative Complications , Retrospective Studies , Rupture/surgery , Treatment Outcome , Weight-Bearing , Young Adult
11.
PLoS One ; 10(11): e0143552, 2015.
Article in English | MEDLINE | ID: mdl-26599077

ABSTRACT

Bacille Calmette-Guérin (BCG) vaccination of new born babies can protect children against tuberculosis (TB), but fails to protect adults consistently against pulmonary TB underlying the urgent need to develop novel TB vaccines. Majority of first generation TB vaccine candidates have relied on a very limited number of antigens typically belonging to the active phase of infection. We have designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara virus (MVA). Up to fourteen antigens representative of the three phases of TB infection (active, latent and resuscitation) were inserted into MVA. Using three different strains of mouse (BALB/c, C57BL/6 and C3H/HeN), we show that a single vaccination results in induction of both CD4 and CD8 T cells, displaying capacity to produce multiple cytokines together with cytolytic activity targeting a large array of epitopes. As expected, dominance of responses was linked to the mouse haplotype although for a given haplotype, responses specific of at least one antigen per phase could always be detected. Vaccination of non-human primates with the 14 antigens MVA-TB candidate resulted in broad and potent cellular-based immunogenicity. The remarkable plasticity of MVA opens the road to development of a novel class of highly complex recombinant TB vaccines to be evaluated in both prophylactic and therapeutic settings.


Subject(s)
Immunity, Cellular , Tuberculosis Vaccines/immunology , Tuberculosis/immunology , Viral Vaccines/immunology , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Cytokines/metabolism , Cytotoxicity, Immunologic , Disease Models, Animal , Interferon-gamma/biosynthesis , Male , Mice , Mycobacterium bovis/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Tuberculosis/prevention & control , Tuberculosis/therapy , Tuberculosis Vaccines/genetics , Vaccines, DNA , Viral Vaccines/genetics
12.
Gut ; 64(12): 1961-71, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25429051

ABSTRACT

OBJECTIVE: To assess a new adenovirus-based immunotherapy as a novel treatment approach to chronic hepatitis B (CHB). METHODS: TG1050 is a non-replicative adenovirus serotype 5 encoding a unique large fusion protein composed of a truncated HBV Core, a modified HBV Polymerase and two HBV Envelope domains. We used a recently described HBV-persistent mouse model based on a recombinant adenovirus-associated virus encoding an over length genome of HBV that induces the chronic production of HBsAg, HBeAg and infectious HBV particles to assess the ability of TG1050 to induce functional T cells in face of a chronic status. RESULTS: In in vitro studies, TG1050 was shown to express the expected large polyprotein together with a dominant, smaller by-product. Following a single administration in mice, TG1050 induced robust, multispecific and long-lasting HBV-specific T cells detectable up to 1 year post-injection. These cells target all three encoded immunogens and display bifunctionality (i.e., capacity to produce both interferon γ and tumour necrosis factor α as well as cytolytic functions). In addition, control of circulating levels of HBV DNA and HBsAg was observed while alanine aminotransferase levels remain in the normal range. CONCLUSIONS: Injection of TG1050 induced both splenic and intrahepatic functional T cells producing cytokines and displaying cytolytic activity in HBV-naïve and HBV-persistent mouse models together with significant reduction of circulating viral parameters. These results warrant clinical evaluation of TG1050 in the treatment of CHB.


Subject(s)
Adenoviridae/metabolism , CD8-Positive T-Lymphocytes/metabolism , DNA, Viral/blood , Hepatitis B virus/immunology , Hepatitis B, Chronic/therapy , Immunotherapy/methods , Viral Fusion Proteins/immunology , Adenoviridae/classification , Alanine Transaminase/blood , Animals , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/immunology , Disease Models, Animal , Gene Products, env/genetics , Gene Products, env/immunology , Genetic Vectors , HLA-A2 Antigen/genetics , Hepatitis B Core Antigens/genetics , Hepatitis B Core Antigens/immunology , Hepatitis B Surface Antigens/blood , Hepatitis B, Chronic/blood , Interferon-gamma/blood , Lymphocyte Count , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Time Factors , Tumor Necrosis Factor-alpha/blood , Viral Fusion Proteins/genetics , Viral Load
13.
J Virol ; 88(10): 5242-55, 2014 May.
Article in English | MEDLINE | ID: mdl-24574403

ABSTRACT

UNLABELLED: To identify novel stimulators of the innate immune system, we constructed a panel of eight HEK293 cell lines double positive for human Toll-like receptors (TLRs) and an NF-κB-inducible reporter gene. Screening of a large variety of compounds and cellular extracts detected a TLR3-activating compound in a microsomal yeast extract. Fractionation of this extract identified an RNA molecule of 4.6 kb, named nucleic acid band 2 (NAB2), that was sufficient to confer the activation of TLR3. Digests with single- and double-strand-specific RNases showed the double-strand nature of this RNA, and its sequence was found to be identical to that of the genome of the double-stranded RNA (dsRNA) L-BC virus of Saccharomyces cerevisiae. A large-scale process of production and purification of this RNA was established on the basis of chemical cell lysis and dsRNA-specific chromatography. NAB2 complexed with the cationic lipid Lipofectin but neither NAB2 nor Lipofectin alone induced the secretion of interleukin-12(p70) [IL-12(p70)], alpha interferon, gamma interferon-induced protein 10, macrophage inflammatory protein 1ß, or IL-6 in human monocyte-derived dendritic cells. While NAB2 activated TLR3, Lipofectin-stabilized NAB2 also signaled via the cytoplasmic sensor for RNA recognition MDA-5. A significant increase of RMA-MUC1 tumor rejection and survival was observed in C57BL/6 mice after prophylactic vaccination with MUC1-encoding modified vaccinia virus Ankara (MVA) and NAB2-Lipofectin. This combination of immunotherapies strongly increased at the injection sites the percentage of infiltrating natural killer (NK) cells and plasmacytoid dendritic cells (pDCs), cell types which can modulate innate and adaptive immune responses. IMPORTANCE: Virus-based cancer vaccines offer a good alternative to the treatment of cancer but could be improved. Starting from a screening approach, we have identified and characterized an unexplored biological molecule with immunomodulatory characteristics which augments the efficacy of an MVA-based immunotherapeutic agent. The immune modulator consists of the purified dsRNA genome isolated from a commercially used yeast strain, NAB2, mixed with a cationic lipid, Lipofectin. NAB2-Lipofectin stimulates the immune system via TLR3 and MDA-5. When it was injected at the MVA vaccination site, the immune modulator increased survival in a preclinical tumor model. We could demonstrate that NAB2-Lipofectin augments the MVA-induced infiltration of natural killer and plasmacytoid dendritic cells. We suggest indirect mechanisms of activation of these cell types by the influence of NAB2-Lipofectin on innate and adaptive immunity. Detailed analysis of cell migration at the vaccine injection site and the appropriate choice of an immune modulator should be considered to achieve the rational improvement of virus vector-based vaccination by immune modulators.


Subject(s)
Dendritic Cells/immunology , Immunologic Factors/immunology , Neoplasms/therapy , RNA, Double-Stranded/immunology , RNA, Viral/immunology , Saccharomyces cerevisiae/virology , Toll-Like Receptor 3/immunology , Animals , Cell Line , Cytokines/metabolism , Disease Models, Animal , Immunologic Factors/isolation & purification , Immunologic Factors/therapeutic use , Immunotherapy/methods , Mice , Mice, Inbred C57BL , RNA, Double-Stranded/isolation & purification , RNA, Double-Stranded/therapeutic use , RNA, Viral/isolation & purification , RNA, Viral/therapeutic use , Survival Analysis
14.
Ann Vasc Surg ; 28(5): 1321.e13-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24509382

ABSTRACT

Vascular complications after dislocation of the shoulder are rare. We report a case of glenohumeral inferior dislocation (luxatio erecta) responsible for an acute ischemia of the upper limb. Endovascular treatment with a covered stent associated with the evacuation of the compressive hematoma was privileged. In the second stage, an axillary bypass was carried out because of an intrastent thrombosis responsible for an acute ischemia of the right upper limb. The stabilization of the glenohumeral articulation was obtained later with an anterior coracoid bone block. The conventional surgical treatment remains the standard treatment. Hybrid techniques with endovascular clamping can be useful in the presence of proximal arterial lesions. Endovascular treatment is an interesting therapeutic alternative in the urgency and in selected cases but its mid- and long-term results should still be evaluated.


Subject(s)
Aneurysm, False/etiology , Axillary Artery , Endovascular Procedures/methods , Shoulder Dislocation/complications , Aged , Aneurysm, False/diagnosis , Aneurysm, False/surgery , Angiography , Humans , Male , Tomography, X-Ray Computed
15.
MAbs ; 6(2): 533-46, 2014.
Article in English | MEDLINE | ID: mdl-24492308

ABSTRACT

The humanized monoclonal antibody H27K15 specifically targets human CD115, a type III tyrosine kinase receptor involved in multiple cancers and inflammatory diseases. Binding of H27K15 to hCD115 expressing cells inhibits the functional effect of colony-stimulating factor-1 (CSF-1), in a non-competitive manner. Both homology modeling and docking programs were used here to model the human CD115 extracellular domains, the H27K15 variable region and their interaction. The resulting predicted H27K15 epitope includes mainly the D1 domain in the N-terminal extracellular region of CD115 and some residues of the D2 domain. Sequence alignment with the non-binding murine CD115, enzyme-linked immunosorbent assay, nuclear magnetic resonance spectroscopy and affinity measurements by quartz crystal microbalance revealed critical residues of this epitope that are essential for H27K15 binding. A combination of computational simulations and biochemical experiments led to the design of a chimeric CD115 carrying the human epitope of H27K15 in a murine CD115 backbone that is able to bind both H27K15 as well as the murine ligands CSF-1 and IL-34. These results provide new possibilities to minutely study the functional effects of H27K15 in a transgenic mouse that would express this chimeric molecule.


Subject(s)
Antibodies, Monoclonal/metabolism , Interleukins/immunology , Macrophage Colony-Stimulating Factor/metabolism , Receptor, Macrophage Colony-Stimulating Factor/immunology , Recombinant Fusion Proteins/metabolism , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Computational Biology , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Humans , Immunoglobulin Variable Region/chemistry , Macrophage Colony-Stimulating Factor/immunology , Mice , Models, Chemical , Protein Binding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/immunology , Sequence Alignment
16.
Biomol NMR Assign ; 8(1): 1-6, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23138856

ABSTRACT

The complement 4 binding protein (C4bp) plays a crucial role in the inhibition of the complement cascade. It has an extraordinary seven-arm octopus-like structure with 7 tentacle-like identical chains, held together at their C-terminal end. The C-terminal domain does oligomerize in isolation, and is necessary and sufficient to oligomerize full-length C4bp. It is predicted to form a seven-helix coiled coil, and its multimerization properties make it a promising vaccine adjuvant, probably by enhancing the structural stability and binding affinity of the presented antigen. Here, we present the solid-state NMR resonance assignment of the human C4bp C-terminal oligomerization Domain, hC4pbOD, and the corresponding secondary chemical shifts.


Subject(s)
Complement C4b-Binding Protein/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Multimerization , Amino Acid Sequence , Humans , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary
17.
PLoS One ; 8(9): e73310, 2013.
Article in English | MEDLINE | ID: mdl-24019914

ABSTRACT

Tumor progression is promoted by Tumor-Associated Macrophages (TAMs) and metastasis-induced bone destruction by osteoclasts. Both myeloid cell types depend on the CD115-CSF-1 pathway for their differentiation and function. We used 3 different mouse cancer models to study the effects of targeting cancer host myeloid cells with a monoclonal antibody (mAb) capable of blocking CSF-1 binding to murine CD115. In mice bearing sub-cutaneous EL4 tumors, which are CD115-negative, the anti-CD115 mAb depleted F4/80(+) CD163(+) M2-type TAMs and reduced tumor growth, resulting in prolonged survival. In the MMTV-PyMT mouse model, the spontaneous appearance of palpable mammary tumors was delayed when the anti-CD115 mAb was administered before malignant transition and tumors became palpable only after termination of the immunotherapy. When administered to mice already bearing established PyMT tumors, anti-CD115 treatment prolonged their survival and potentiated the effect of chemotherapy with Paclitaxel. As shown by immunohistochemistry, this therapeutic effect correlated with the depletion of F4/80(+)CD163(+) M2-polarized TAMs. In a breast cancer model of bone metastasis, the anti-CD115 mAb potently blocked the differentiation of osteoclasts and their bone destruction activity. This resulted in the inhibition of cancer-induced weight loss. CD115 thus represents a promising target for cancer immunotherapy, since a specific blocking antibody may not only inhibit the growth of a primary tumor through TAM depletion, but also metastasis-induced bone destruction through osteoclast inhibition.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Macrophages/immunology , Neoplasms, Experimental/therapy , Osteoclasts/immunology , Receptor, Macrophage Colony-Stimulating Factor/immunology , Animals , Antibodies, Monoclonal/immunology , Bone Neoplasms/secondary , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Heterografts , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Survival Analysis
18.
MAbs ; 5(5): 736-47, 2013.
Article in English | MEDLINE | ID: mdl-23924795

ABSTRACT

Cancer progression has been associated with the presence of tumor-associated M2-macrophages (M2-TAMs) able to inhibit anti-tumor immune responses. It is also often associated with metastasis-induced bone destruction mediated by osteoclasts. Both cell types are controlled by the CD115 (CSF-1R)/colony-stimulating factor-1 (CSF-1, M-CSF) pathway, making CD115 a promising target for cancer therapy. Anti-human CD115 monoclonal antibodies (mAbs) that inhibit the receptor function have been generated in a number of laboratories. These mAbs compete with CSF-1 binding to CD115, dramatically affecting monocyte survival and preventing osteoclast and macrophage differentiation, but they also block CD115/CSF-1 internalization and degradation, which could lead to potent rebound CSF-1 effects in patients after mAb treatment has ended. We thus generated and selected a non-ligand competitive anti-CD115 mAb that exerts only partial inhibitory effects on CD115 signaling without blocking the internalization or the degradation of the CD115/CSF-1 complex. This mAb, H27K15, affects monocyte survival only minimally, but downregulates osteoclast differentiation and activity. Importantly, it inhibits monocyte differentiation to CD163(+)CD64(+) M2-polarized suppressor macrophages, skewing their differentiation toward CD14(-)CD1a(+) dendritic cells (DCs). In line with this observation, H27K15 also drastically inhibits monocyte chemotactic protein-1 secretion and reduces interleukin-6 production; these two molecules are known to be involved in M2-macrophage recruitment. Thus, the non-depleting mAb H27K15 is a promising anti-tumor candidate, able to inhibit osteoclast differentiation, likely decreasing metastasis-induced osteolysis, and able to prevent M2 polarization of TAMs while inducing DCs, hence contributing to the creation of more efficient anti-tumor immune responses.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cell Differentiation/drug effects , Dendritic Cells/drug effects , Macrophages/drug effects , Monocytes/drug effects , Osteolysis/prevention & control , Animals , Antibodies, Monoclonal/immunology , Cell Differentiation/immunology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/immunology , Cells, Cultured , Chemokine CCL2/immunology , Chemokine CCL2/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Flow Cytometry , HL-60 Cells , Humans , Interleukin-6/immunology , Interleukin-6/metabolism , Macrophage Colony-Stimulating Factor/immunology , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Monocytes/immunology , Monocytes/metabolism , NIH 3T3 Cells , Osteoclasts/drug effects , Osteoclasts/immunology , Osteoclasts/metabolism , Osteolysis/immunology , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Binding/immunology , Receptor, Macrophage Colony-Stimulating Factor/immunology , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology
19.
Arthroscopy ; 29(7): 1217-23, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23809457

ABSTRACT

PURPOSE: To investigate the safety and efficiency of a 2-portal lateral (anterior and middle) approach to arthroscopic subtalar arthrodesis. METHODS: A cadaveric study was performed on 30 feet of 15 fresh cadaveric bodies (15 right and 15 left; 21 female specimens and 9 male specimens). The mean age at death was 78 ± 6.7 years. The procedure was performed with the specimen in the supine position through 2 lateral (anterior and middle) sinus tarsi portals by use of a 4.0-mm arthroscope. A 3.5-mm synovial shaver was used for debridement, and a 4.5-mm shielded bur was used to resect posterior subtalar facets. The feet were then dissected. The primary outcomes were the percentage of resected joint surface and the distances between portals and both sural and superficial peroneal nerves. The secondary outcomes were injury of sinus tarsi ligaments and lateral arterial network, calcaneofibular ligament, peroneal tendons, flexor hallucis longus tendon, and posterior tibial neurovascular bundle. RESULTS: The mean percentages of resected talar and calcaneal posterior subtalar facets were 94% ± 7.2% and 91% ± 6.8%, respectively. The minimum distance of either subtalar portal to the nerves was 4 mm. No nerve injury was observed. In 28 of 30 cases, the lateral sinus tarsi arterial network was found intact. In all cases the inferior retinaculum extensor was transfixed by the portals. In all cases both cervical and interosseous talocalcaneal ligaments were found intact. In 3 cases a shaving lesion was observed on the peroneus brevis tendon. CONCLUSIONS: According to this cadaveric study, more than 90% freshening of the posterior subtalar articular facets can be achieved through a 2-portal lateral (anterior and middle) approach. This technique is reproducible and safe with regard to the surrounding nerves. CLINICAL RELEVANCE: The 2 lateral portals may offer a safe and effective alternative approach for arthroscopic arthrodesis of the posterior subtalar joint.


Subject(s)
Arthrodesis/methods , Arthroscopy/methods , Subtalar Joint/surgery , Aged , Ankle/surgery , Ankle Joint/surgery , Arthrodesis/adverse effects , Arthrodesis/instrumentation , Arthroscopy/adverse effects , Cadaver , Calcaneus/surgery , Female , Humans , Ligaments, Articular/injuries , Male , Peroneal Nerve/anatomy & histology , Supine Position , Sural Nerve/anatomy & histology , Tendon Injuries/etiology , Tendons/surgery
20.
Infect Immun ; 76(8): 3817-23, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18474650

ABSTRACT

Highly purified protein antigens are usually poor immunogens; in practice, adjuvants are needed to obtain satisfactory immune responses. Plasmodium yoelii 19-kDa merozoite surface protein 1 (MSP1(19)) is a weak antigen, but mice vaccinated with this antigen in strong adjuvants can survive an otherwise lethal parasite challenge. Fusion proteins comprising this antigen fused to the oligomerization domain of the murine complement inhibitor C4-binding protein (C4bp) and a series of homologues have been produced. These C4bp domains acted as adjuvants for the fused antigen; the MSP1(19)-murine C4bp fusion protein induced protective immunity in BALB/c mice. Because this fusion protein also induced antibodies against circulating murine C4bp, distantly related C4bp oligomerization domains fused to the same antigen were tested. These homologous domains did not induce antibodies against murine C4bp and, surprisingly, induced higher antibody titers against the antigen than the murine C4bp domain induced. These results demonstrate a new adjuvantlike effect of C4bp oligomerization domains.


Subject(s)
Adjuvants, Immunologic , Histocompatibility Antigens/immunology , Malaria/prevention & control , Merozoite Surface Protein 1/immunology , Recombinant Fusion Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Protozoan/blood , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique, Indirect , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Parasitemia/prevention & control , Plasmodium yoelii/immunology , Protein Structure, Tertiary , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...