Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Mol Diagn ; 23(8): 929-940, 2021 08.
Article in English | MEDLINE | ID: mdl-34147695

ABSTRACT

The genetic basis of peripheral T-cell lymphoma (PTCL) is complex and encompasses several recurrent fusion transcripts discovered over the past years by means of massive parallel sequencing. However, there is currently no affordable and rapid technology for their simultaneous detection in clinical samples. Herein, we developed a multiplex ligation-dependent RT-PCR-based assay, followed by high-throughput sequencing, to detect 33 known PTCL-associated fusion transcripts. Anaplastic lymphoma kinase (ALK) fusion transcripts were detected in 15 of 16 ALK-positive anaplastic large-cell lymphomas. The latter case was further characterized by a novel SATB1_ALK fusion transcript. Among 239 other PTCLs, representative of nine entities, non-ALK fusion transcripts were detected in 24 samples, mostly of follicular helper T-cell (TFH) derivation. The most frequent non-ALK fusion transcript was ICOS_CD28 in nine TFH-PTCLs, one PTCL not otherwise specified, and one adult T-cell leukemia/lymphoma, followed by VAV1 rearrangements with multiple partners (STAP2, THAP4, MYO1F, and CD28) in five samples (three PTCL not otherwise specified and two TFH-PTCLs). The other rearrangements were CTLA4_CD28 (one TFH-PTCL), ITK_SYK (two TFH-PTCLs), ITK_FER (one TFH-PTCL), IKZF2_ERBB4 (one TFH-PTCL and one adult T-cell leukemia/lymphoma), and TP63_TBL1XR1 (one ALK-negative anaplastic large-cell lymphoma). All fusions detected by our assay were validated by conventional RT-PCR and Sanger sequencing in 30 samples with adequate material. The simplicity and robustness of this targeted multiplex assay make it an attractive tool for the characterization of these heterogeneous diseases.


Subject(s)
Gene Fusion , Gene Rearrangement , High-Throughput Nucleotide Sequencing , Lymphoma, T-Cell, Peripheral/diagnosis , Lymphoma, T-Cell, Peripheral/genetics , Multiplex Polymerase Chain Reaction , Oncogene Proteins, Fusion , Biomarkers, Tumor , Chromosome Banding , High-Throughput Nucleotide Sequencing/methods , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Multiplex Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity
2.
BMC Bioinformatics ; 22(1): 120, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33711922

ABSTRACT

BACKGROUND: Recently, copy number variations (CNV) impacting genes involved in oncogenic pathways have attracted an increasing attention to manage disease susceptibility. CNV is one of the most important somatic aberrations in the genome of tumor cells. Oncogene activation and tumor suppressor gene inactivation are often attributed to copy number gain/amplification or deletion, respectively, in many cancer types and stages. Recent advances in next generation sequencing protocols allow for the addition of unique molecular identifiers (UMI) to each read. Each targeted DNA fragment is labeled with a unique random nucleotide sequence added to sequencing primers. UMI are especially useful for CNV detection by making each DNA molecule in a population of reads distinct. RESULTS: Here, we present molecular Copy Number Alteration (mCNA), a new methodology allowing the detection of copy number changes using UMI. The algorithm is composed of four main steps: the construction of UMI count matrices, the use of control samples to construct a pseudo-reference, the computation of log-ratios, the segmentation and finally the statistical inference of abnormal segmented breaks. We demonstrate the success of mCNA on a dataset of patients suffering from Diffuse Large B-cell Lymphoma and we highlight that mCNA results have a strong correlation with comparative genomic hybridization. CONCLUSION: We provide mCNA, a new approach for CNV detection, freely available at https://gitlab.com/pierrejulien.viailly/mcna/ under MIT license. mCNA can significantly improve detection accuracy of CNV changes by using UMI.


Subject(s)
Comparative Genomic Hybridization , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Adult , Humans , Male , Middle Aged , Prospective Studies , Sequence Analysis, DNA
3.
Blood Adv ; 5(4): 1003-1016, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33591326

ABSTRACT

Although copy number alterations (CNAs) and translocations constitute the backbone of the diagnosis and prognostication of acute myeloid leukemia (AML), techniques used for their assessment in routine diagnostics have not been reconsidered for decades. We used a combination of 2 next-generation sequencing-based techniques to challenge the currently recommended conventional cytogenetic analysis (CCA), comparing the approaches in a series of 281 intensively treated patients with AML. Shallow whole-genome sequencing (sWGS) outperformed CCA in detecting European Leukemia Net (ELN)-defining CNAs and showed that CCA overestimated monosomies and suboptimally reported karyotype complexity. Still, the concordance between CCA and sWGS for all ELN CNA-related criteria was 94%. Moreover, using in silico dilution, we showed that 1 million reads per patient would be enough to accurately assess ELN-defining CNAs. Total genomic loss, defined as a total loss ≥200 Mb by sWGS, was found to be a better marker for genetic complexity and poor prognosis compared with the CCA-based definition of complex karyotype. For fusion detection, the concordance between CCA and whole-transcriptome sequencing (WTS) was 99%. WTS had better sensitivity in identifying inv(16) and KMT2A rearrangements while showing limitations in detecting lowly expressed PML-RARA fusions. Ligation-dependent reverse transcription polymerase chain reaction was used for validation and was shown to be a fast and reliable method for fusion detection. We conclude that a next-generation sequencing-based approach can replace conventional CCA for karyotyping, provided that efforts are made to cover lowly expressed fusion transcripts.


Subject(s)
Leukemia, Myeloid, Acute , Chromosome Aberrations , Cytogenetic Analysis , DNA Copy Number Variations , Humans , Karyotyping , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics
4.
Blood Cancer J ; 10(5): 59, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444689

ABSTRACT

Non-Hodgkin B-cell lymphomas (B-NHLs) are a highly heterogeneous group of mature B-cell malignancies. Their classification thus requires skillful evaluation by expert hematopathologists, but the risk of error remains higher in these tumors than in many other areas of pathology. To facilitate diagnosis, we have thus developed a gene expression assay able to discriminate the seven most frequent B-cell NHL categories. This assay relies on the combination of ligation-dependent RT-PCR and next-generation sequencing, and addresses the expression of more than 130 genetic markers. It was designed to retrieve the main gene expression signatures of B-NHL cells and their microenvironment. The classification is handled by a random forest algorithm which we trained and validated on a large cohort of more than 400 annotated cases of different histology. Its clinical relevance was verified through its capacity to prevent important misclassification in low grade lymphomas and to retrieve clinically important characteristics in high grade lymphomas including the cell-of-origin signatures and the MYC and BCL2 expression levels. This accurate pan-B-NHL predictor, which allows a systematic evaluation of numerous diagnostic and prognostic markers, could thus be proposed as a complement to conventional histology to guide the management of patients and facilitate their stratification into clinical trials.


Subject(s)
Lymphoma, B-Cell/diagnosis , Machine Learning , Transcriptome , Biomarkers, Tumor/genetics , Diagnosis, Computer-Assisted , Gene Expression Profiling , Humans , Lymphoma, B-Cell/classification , Lymphoma, B-Cell/genetics , Progression-Free Survival , Tumor Microenvironment
5.
Haematologica ; 105(6): 1582-1592, 2020 06.
Article in English | MEDLINE | ID: mdl-31488561

ABSTRACT

Peripheral T-cell lymphoma comprises a heterogeneous group of mature non-Hodgkin lymphomas. Their diagnosis is challenging, with up to 30% of cases remaining unclassifiable and referred to as "not otherwise specified". We developed a reverse transcriptase-multiplex ligation-dependent probe amplification gene expression profiling assay to differentiate the main T-cell lymphoma entities and to study the heterogeneity of the "not specified" category. The test evaluates the expression of 20 genes, including 17 markers relevant to T-cell immunology and lymphoma biopathology, one Epstein-Barr virus-related transcript, and variants of RHOA (G17V) and IDH2 (R172K/T). By unsupervised hierarchical clustering, our assay accurately identified 21 of 21 ALK-positive anaplastic large cell lymphomas, 16 of 16 extranodal natural killer (NK)/T-cell lymphomas, 6 of 6 hepatosplenic T-cell lymphomas, and 13 of 13 adult T-cell leukemia/lymphomas. ALK-negative anaplastic lymphomas (n=34) segregated into one cytotoxic cluster (n=10) and one non-cytotoxic cluster expressing Th2 markers (n=24) and enriched in DUSP22-rearranged cases. The 63 TFH-derived lymphomas divided into two subgroups according to a predominant TFH (n=50) or an enrichment in Th2 (n=13) signatures. We next developed a support vector machine predictor which attributed a molecular class to 27 of 77 not specified T-cell lymphomas: 17 TFH, five cytotoxic ALK-negative anaplastic and five NK/T-cell lymphomas. Among the remaining cases, we identified two cell-of-origin subgroups corresponding to cytotoxic/Th1 (n=19) and Th2 (n=24) signatures. A reproducibility test on 40 cases yielded a 90% concordance between three independent laboratories. This study demonstrates the applicability of a simple gene expression assay for the classification of peripheral T-cell lymphomas. Its applicability to routinely-fixed samples makes it an attractive adjunct in diagnostic practice.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, T-Cell, Peripheral , Adult , Gene Expression Profiling , Herpesvirus 4, Human , Humans , Lymphoma, T-Cell, Peripheral/diagnosis , Lymphoma, T-Cell, Peripheral/genetics , Reproducibility of Results
6.
Blood Cancer J ; 8(8): 74, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30069017

ABSTRACT

From a liquid biopsy, cell-free DNA (cfDNA) can provide information regarding basal tumoral genetic patterns and changes upon treatment. In a prospective cohort of 30 diffuse large B-cell lymphomas (DLBCL), we determined the clinical relevance of cfDNA using targeted next-generation sequencing and its correlation with PET scan imaging at the time of diagnosis and during treatment. Using a dedicated DLBCL panel, mutations were identified at baseline for 19 cfDNAs and profiles were consistent with expected DLBCL patterns. Tumor burden-related clinical and PET scan features (LDH, IPI, and metabolic tumor volume) were significantly correlated with the quantity of tumoral cfDNA. Among the four patients presenting additional mutations in their cfDNAs, three had high metabolic tumor volumes, suggesting that cfDNA more accurately reflects tumor heterogeneity than tissues biopsy itself. Mid-treatment, four patients still had basal mutations in their cfDNAs, including three in partial response according to their Deauville scores. Our study highlights the major interests in liquid biopsy, in particular in the context of bulky tumors where cfDNA allows capturing the entire tumoral mutation profile. Therefore, cfDNA analysis in DLBCL represents a complementary approach to PET scan imaging.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , DNA, Neoplasm , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , Adult , Aged , Aged, 80 and over , Alleles , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , DNA Copy Number Variations , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy , Lymphoma, Large B-Cell, Diffuse/therapy , Male , Middle Aged , Positron Emission Tomography Computed Tomography , Prospective Studies , Young Adult
8.
Lab Invest ; 98(3): 371-379, 2018 03.
Article in English | MEDLINE | ID: mdl-29251734

ABSTRACT

Detection of anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 (ROS1), and rearranged during transfection (RET) gene rearrangements in lung adenocarcinoma is usually performed by immunohistochemistry (IHC) screening followed by fluorescence in situ hybridization (FISH), which is an expensive and difficult technique. Ligation-dependent reverse transcription polymerase chain reaction (RT-PCR) multiplex technique can detect gene rearrangements using probes specifically hybridized to either side of the break point. PCR products are then sequenced by pyrosequencing or high throughput sequencing in order to identify the two genes involved. The reagent cost is <15 dollars per patient and results are available in 2 days. We have developed a 47-probe LD-RT-PCR kit especially for lung adenocarcinomas. Thirty-nine lung adenocarcinomas were studied: 24 ALK+, 14 ROS1+, and 1 RET+. ALK+ and ROS1+ were IHC+ (D5F3 Ventana for ALK and D4D6 Cell Signaling Technology for ROS1) and all cases were FISH+ (Vysis ALK Breakapart Probe Abbott for ALK, Zytolight SPEC ROS1 Dualcolor Breakapart Probe for ROS1 and Zytolight SPEC RET Dual Color Breakapart for RET); 14 wild type samples were included as negative controls. Using LD-RT-PCR, 15 rearrangements (63%) were detected in the ALK cases (gene partner: EML4 in all cases), 9 rearrangements (64%) in the ROS1 cases (gene partners: CD74 in 8 cases and SLC34A2 in 1 case) and 1 (100%) in the single RET case (gene partner: KIF5B). No rearrangement was found in the 14 negative control cases. Negative cases using LD-RT-PCR could be explained by the fact that some partner genes were not included in our assay and therefore could not be detected. Because it is an affordable, fast, and very simple technique, we propose using LD-RT-PCR when ALK immunostaining is positive. For LD-RT-PCR-negative cases, samples should then be analyzed by FISH.


Subject(s)
Adenocarcinoma/genetics , Anaplastic Lymphoma Kinase/genetics , Lung Neoplasms/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Adult , Aged , Case-Control Studies , Female , Gene Rearrangement , Humans , Male , Middle Aged , Proto-Oncogene Mas , Proto-Oncogene Proteins c-ret/genetics , Sensitivity and Specificity
9.
J Mol Diagn ; 19(6): 892-904, 2017 11.
Article in English | MEDLINE | ID: mdl-29054399

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. It includes three major subtypes termed germinal center B-cell-like, activated B-cell-like, and primary mediastinal B-cell lymphoma. With the emergence of novel targeted therapies, accurate methods capable of interrogating this cell-of-origin classification should soon become essential in the clinics. To address this issue, we developed a novel gene expression profiling DLBCL classifier based on reverse transcriptase multiplex ligation-dependent probe amplification. This assay simultaneously evaluates the expression of 21 markers, to differentiate primary mediastinal B-cell lymphoma, activated B-cell-like, germinal center B-cell-like, and also Epstein-Barr virus-positive DLBCLs. It was trained using 70 paraffin-embedded biopsies and validated using >160 independent samples. Compared with a reference classification established from Affymetrix U133 + 2 data, reverse transcriptase multiplex ligation-dependent probe amplification classified 85.0% samples into the expected subtype, comparing favorably with current diagnostic methods. This assay also proved to be highly efficient in detecting the MYD88 L265P mutation, even in archival paraffin-embedded tissues. This reliable, rapid, and cost-effective method uses common instruments and reagents and could thus easily be implemented into routine diagnosis workflows, to improve the management of these aggressive tumors.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/genetics , Multiplex Polymerase Chain Reaction/methods , Oligonucleotide Array Sequence Analysis/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Biomarkers, Tumor/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , Lymphoma, Large B-Cell, Diffuse/classification , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation , Paraffin Embedding
10.
Clin Cancer Res ; 23(9): 2232-2244, 2017 May 01.
Article in English | MEDLINE | ID: mdl-27923841

ABSTRACT

Purpose:MYD88 mutations, notably the recurrent gain-of-function L265P variant, are a distinguishing feature of activated B-cell like (ABC) diffuse large B-cell lymphoma (DLBCL), leading to constitutive NFκB pathway activation. The aim of this study was to examine the distinct genomic profiles of MYD88-mutant DLBCL, notably according to the presence of the L265P or other non-L265P MYD88 variants.Experimental Design: A cohort of 361 DLBCL cases (94 MYD88 mutant and 267 MYD88 wild-type) was submitted to next-generation sequencing (NGS) focusing on 34 genes to analyze associated mutations and copy number variations, as well as gene expression profiling, and clinical and prognostic analyses.Results: Importantly, we highlighted different genomic profiles for MYD88 L265P and MYD88 non-L265P-mutant DLBCL, shedding light on their divergent backgrounds. Clustering analysis also segregated subgroups according to associated genetic alterations among patients with the same MYD88 mutation. We showed that associated CD79B and MYD88 L265P mutations act synergistically to increase NFκB pathway activation, although the majority of MYD88 L265P-mutant cases harbors downstream NFκB alterations, which can predict BTK inhibitor resistance. Finally, although the MYD88 L265P variant was not an independent prognostic factor in ABC DLBCL, associated CD79B mutations significantly improved the survival of MYD88 L265P-mutant ABC DLBCL in our cohort.Conclusions: This study highlights the relative heterogeneity of MYD88-mutant DLBCL, adding to the field's knowledge of the theranostic importance of MYD88 mutations, but also of associated alterations, emphasizing the usefulness of genomic profiling to best stratify patients for targeted therapy. Clin Cancer Res; 23(9); 2232-44. ©2016 AACR.


Subject(s)
Genetic Heterogeneity , Lymphoma, Large B-Cell, Diffuse/genetics , Myeloid Differentiation Factor 88/genetics , Prognosis , Adolescent , Adult , Aged , Aged, 80 and over , DNA Copy Number Variations/genetics , Female , Genome, Human , Genomics , High-Throughput Nucleotide Sequencing , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Mutation , NF-kappa B/genetics , Signal Transduction/genetics
11.
Am J Hematol ; 92(1): 68-76, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27737507

ABSTRACT

Little is known on the phylogenetic relationship between diagnostic and relapse clones of diffuse large B-cell lymphoma (DLBCL). We applied high throughput sequencing (HTS) of the VDJ locus of Immunoglobulin heavy chain (IGHV) on 14 DLBCL patients with serial samples, including tumor biopsies and/or peripheral blood mononuclear cells (PBMC). Phylogenetic data were consolidated with targeted sequencing and cytogenetics. Phylogeny clearly showed that DLBCL relapse could occur according either an early or a late divergent mode. These two modes of divergence were independent from the elapsed time between diagnosis and relapse. We found no significant features for antigen selection pressure in complementary determining region both at diagnosis and relapse for 9/12 pairs and a conserved negative selection pressure for the three remaining cases. Targeted HTS and conventional cytogenetics revealed a branched vs. linear evolution for 5/5 IGHV early divergent cases, but unexpected such "oncogenetic" branched evolution could be found in at least 2/7 IGHV late divergent cases. Thus, if BCR signaling is mandatory for DLBCL emergence, oncogenetic events under chemotherapy selection pressure may be the main driving forces at relapse. Finally, circulating subclones with divergent IGHV somatic hypermutations patterns from initial biopsy could be detected in PBMC at diagnosis for 4/6 patients and, for two of them, at least one was similar to the ones found at relapse. This study highlights that oncogenetic intraclonal diversity of DLBCL should be evaluated beyond the scope a single biopsy and represents a rationale for future investigations using peripheral blood for lymphoid malignancies genotyping. Am. J. Hematol. 92:68-76, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Clonal Evolution , Immunoglobulin Heavy Chains/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Neoplasm Recurrence, Local/genetics , V(D)J Recombination , Genes, Immunoglobulin Heavy Chain , High-Throughput Nucleotide Sequencing , Humans , Lymphoma, Large B-Cell, Diffuse/blood , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , Neoplasm Recurrence, Local/immunology , Phylogeny , Retrospective Studies , Sequence Analysis, DNA
12.
J Mol Diagn ; 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25891505

ABSTRACT

Diffuse large B-cell lymphoma, the most common non-Hodgkin lymphoma, is subdivided into germinal center B-cell-like and activated B-cell-like subtypes. Unfortunately, these lymphomas are difficult to differentiate in routine diagnosis, impeding the development of treatments. Patients with these lymphomas can benefit from specific therapies. We therefore developed a simple and rapid classifier based on a reverse transcriptase multiplex ligation-dependent probe amplification assay and 14 gene signatures. Compared with the Affymetrix U133+2 gold standard, all 46 samples (95% CI, 92%-100%) of a validation cohort classified by both techniques were attributed to the expected subtype. Similarly, 93% of the 55 samples (95% CI, 82%-98%) of a second independent series characterized with a mid-throughput gene expression profiling method were classified correctly. Unclassifiable sample proportions reached 13.2% and 13.8% in these cohorts, comparable with the frequency originally reported. The developed assay was also sensitive enough to obtain reliable results from formalin-fixed, paraffin-embedded samples and flexible enough to include prognostic factors such as MYC/BCL2 co-expression. Finally, in a series of 135 patients, both overall (P = 0.01) and progression-free (P = 0.004) survival differences between the two subtypes were confirmed. Because the multiplex ligation-dependent probe amplification method is already in use and requires only common instruments and reagents, it could easily be applied to clinical trial patient stratification to help in treatment decisions.

13.
Oncotarget ; 6(18): 16712-24, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-25762637

ABSTRACT

Enhancer of Zeste Homolog 2 (EZH2) plays an essential epigenetic role in Diffuse Large B Cell Lymphoma (DLBCL) development. Recurrent somatic heterozygous gain-of-function mutations of EZH2 have been identified in DLBCL, most notably affecting tyrosine 641 (Y641), inducing hyper-trimethylation of H3K27 (H3K27me3). Novel EZH2 inhibitors are being tested in phase 1 and 2 clinical trials but no study has examined which patients would most benefit from this treatment. We evaluated the immunohistochemical (IHC) methylation profiles of 82 patients with DLBCL, as well as the mutational profiles of 32 patients with DLBCL using NGS analysis of a panel of 34 genes involved in lymphomagenesis. A novel IHC score based on H3K27me2 and H3K27me3 expression was developed, capable of distinguishing patients with wild-type (WT) EZH2 and patients with EZH2 Y641 mutations (p = 10-5). NGS analysis revealed a subclonal EZH2 mutation pattern in EZH2 mutant patients with WT-like IHC methylation profiles, while associated mutations capable of upregulating EZH2 were detected in WT EZH2 patients with mutant-like IHC methylation profiles. IHC and mutational profiles highlight in vivo hyper-H3K27me3 and hypo-H3K27me2 status, pinpoint associated activating mutations and determine EZH2 mutation clonality, maximizing EZH2 inhibitor potential by identifying patients most likely to benefit from treatment.


Subject(s)
Histones/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Polycomb Repressive Complex 2/antagonists & inhibitors , Polycomb Repressive Complex 2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , DNA-Binding Proteins/genetics , Enhancer of Zeste Homolog 2 Protein , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Lymphoma, Large B-Cell, Diffuse/immunology , Male , Methylation , Middle Aged , Young Adult
14.
Pathology ; 47(1): 45-50, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25474514

ABSTRACT

The CXCL12/CXCR4 axis is involved in numerous models of metastatic dissemination, including head and neck squamous cell carcinoma (HNSCC). We assessed the relative expressions of CXCL12, CXCR4 and CXCR7 in the stroma and the tumour of HNSCC, and evaluated the methylation status of the CXCL12 promoter.Snap-frozen, HPV negative HNSCC samples were micro-dissected to isolate the tumoural and stromal compartments. The expression levels of CXCL12, CXCR4 and CXCR7 were assessed by qRT-PCR, and the methylation level of the CXCL12 promoter was evaluated by pyrosequencing.In total, 23 matched tumour/stroma samples were analysed. Higher expressions of CXCR4 and CXCL12 were observed in the stroma (p = 0.012 and p < 0.0001, respectively). No significant difference in expression was observed for CXCR7. A high methylation level (>40%) of the CXCL12 promoter was observed in only a few tumoural samples (5/23) and was associated with a lower expression of the gene (p = 0.03).Stromal cells, rather than the tumour itself, are mainly responsible for the expression of both CXCL12 and CXCR4 expression in HNSCC. CXCR7 expression did not differ between the two compartments and was not related to CXCL12 or CXCR4 expression. Finally, the methylation of the CXCL12 promoter could only explain the low intra-tumoural expression of this gene in 20% of cases.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Chemokine CXCL12/biosynthesis , Head and Neck Neoplasms/metabolism , Receptors, CXCR4/biosynthesis , Receptors, CXCR/biosynthesis , Tumor Microenvironment/physiology , Adult , Aged , Biomarkers, Tumor/analysis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Chemokine CXCL12/analysis , Chemokine CXCL12/genetics , DNA Methylation , Female , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Humans , Immunohistochemistry , Male , Microdissection , Middle Aged , Neoplasm Invasiveness , Promoter Regions, Genetic , Receptors, CXCR/analysis , Receptors, CXCR4/analysis , Reverse Transcriptase Polymerase Chain Reaction , Squamous Cell Carcinoma of Head and Neck
15.
J Cancer ; 5(9): 761-4, 2014.
Article in English | MEDLINE | ID: mdl-25368676

ABSTRACT

CD70 is a co-stimulatory molecule involved in the immune response and also in cancer development and progression. Recent studies show that high CD70 expression in cancer cells may inhibit the anti-tumor response. Furthermore, CD70 expression has been reported as a predictive marker of resistance to chemotherapy in ovarian cancers. Some in vitro studies have shown that CD70 expression is epigenetically down-regulated through hypermethylation of its promoter during tumoral progression. This study evaluated the level of CD70 expression in surgical samples of breast invasive tumors and determined its correlation with CD70 promoter methylation. Twenty "luminal A" and 20 "basal-like" frozen samples from early breast tumors were retrospectively selected. CD70 expression was evaluated by quantitative real-time PCR. Total DNA was bisulfite-treated, and methylation levels of 5 consecutive CG sites present in the proximal region (-464, -421) of the promoter were assessed by pyrosequencing analysis. Statistical analyses were performed using the Mann-Whitney test. The median relative CD70 expression level was 0.37 and was significantly higher in the basal-like group (0.78 [0.24-31.7]) compared to the luminal A group (0.25 [0.03-1.83], p=0.0001). The median methylation level was 61%, with no significant difference between the basal-like (63%) and luminal A (58%) groups. No correlation was found between CD70 expression and CD70 methylation level. In this study, higher CD70 expression was observed in the basal-like group, but this expression was not related to promoter methylation. The higher expression in the poor-prognosis subgroup of patients makes CD70 a potential target for emerging anti-CD70 therapies.

16.
Genes Chromosomes Cancer ; 53(2): 144-53, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24327543

ABSTRACT

Diffuse large B cell lymphoma (DLBCL) is an aggressive and heterogeneous malignancy that can be divided in two major subgroups, germinal center B-cell-like (GCB) and activated B-cell-like (ABC). Activating mutations of genes involved in the BCR and NF-κB pathways (CD79A, CD79B, MYD88, and CARD11) or in epigenetic regulation (EZH2) have been recently reported, preferentially in one of the two DLBCL subtypes. We analyzed the mutational status of these five recurrently mutated genes in a cohort of 161 untreated de novo DLBCL. Overall, 93 mutations were detected, in 61 (38%) of the patients. The L265P MYD88 mutation was the most frequent MYD88 variant (n = 18), observed exclusively in the ABC subtype. CD79A/CD79B ITAM domains were targeted in ABC DLBCL (12/77; 16%), whereas CARD11 mutations were equally distributed in the two subtypes. The EZH2 Y641 substitution was found almost exclusively in the GCB subgroup (15/62; 24%). Twenty cases (12%) displayed two activating mutations, including the most frequent CD79/MYD88 variants combination (n = 8) which is observed exclusively in the ABC subtype. When considering only ABC DLBCL patients treated by rituximab plus chemotherapy, the presence of an activating NF-κB mutation was associated with an unfavorable outcome (3-years OS 26% for mutated cases versus 67% for the cases without mutations, P = 0.0337). Our study demonstrates that activating and targetable mutations are observed at a very high frequency in DLBCL at the time of diagnosis, indicating that sequencing of a limited number of genes could help tailor an optimal treatment strategy in DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Murine-Derived/therapeutic use , Antineoplastic Agents/therapeutic use , Female , Germinal Center/metabolism , Germinal Center/pathology , Humans , Kaplan-Meier Estimate , Lymphoma, Large B-Cell, Diffuse/mortality , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Mutation , Rituximab , Signal Transduction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...