Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Transl Med ; 22(1): 443, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730319

ABSTRACT

BACKGROUND: The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC). Although never studied as a potential modulator of the immune response in most cancers, Keratin 17 (K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in PDAC, and that uncovering this relationship could provide insight to guide the development of immunotherapeutic opportunities to extend patient survival. METHODS: Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational imaging technology were used to decipher the abundance and spatial distribution of T cells, macrophages, and tumor cells, relative to K17 expression in 235 PDACs. RESULTS: K17 expression had profound effects on the exclusion of intratumoral CD8+ T cells and was also associated with decreased numbers of peritumoral CD8+ T cells, CD16+ macrophages, and CD163+ macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8+ T cell abundance were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype, nor KRAS, p53, SMAD4, or CDKN2A mutations. CONCLUSIONS: Thus, K17 expression correlates with major differences in the immune microenvironment that are independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-mediated immune effects on the immune system could restore the innate immunologic response to PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most deadly form of cancer.


Subject(s)
Keratin-17 , Pancreatic Neoplasms , Humans , Keratin-17/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Tumor Microenvironment/immunology , Female , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Male , CD8-Positive T-Lymphocytes/immunology , Macrophages/metabolism , Macrophages/immunology , Middle Aged , Aged , Receptors, Cell Surface , Antigens, Differentiation, Myelomonocytic , Antigens, CD
2.
Am J Clin Pathol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642081

ABSTRACT

OBJECTIVES: To determine the role of keratin 17 (K17) as a predictive biomarker for response to chemotherapy by defining thresholds of K17 expression based on immunohistochemical tests that could be used to optimize therapeutic intervention for patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: We profiled K17 expression, a hallmark of the basal molecular subtype of PDAC, by immunohistochemistry in 2 cohorts of formalin-fixed, paraffin-embedded PDACs (n = 305). We determined a K17 threshold of expression to optimize prognostic stratification according to the lowest Akaike information criterion and explored the potential relationship between K17 and chemoresistance by multivariate predictive analyses. RESULTS: Patients with advanced-stage, low K17 PDACs treated using 5-fluorouracil (5-FU)-based chemotherapeutic regimens had 3-fold longer survival than corresponding cases treated with gemcitabine-based chemotherapy. By contrast, PDACs with high K17 did not respond to either regimen. The predictive value of K17 was independent of tumor mutation status and other clinicopathologic variables. CONCLUSIONS: The detection of K17 in 10% or greater of PDAC cells identified patients with shortest survival. Among patients with low K17 PDACs, 5-FU-based treatment was more likely than gemcitabine-based therapies to extend survival.

3.
Res Sq ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38464123

ABSTRACT

Background: The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC). Although never studied as a potential modulator of the immune response in most cancers, Keratin 17 (K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in PDAC, and that uncovering this relationship could provide insight to guide the development of immunotherapeutic opportunities to extend patient survival. Methods: Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational imaging technology were used to decipher the abundance and spatial distribution of T cells, macrophages, and tumor cells, relative to K17 expression in 235 PDACs. Results: K17 expression had profound effects on the exclusion of intratumoral CD8 + T cells and was also associated with decreased numbers of peritumoral CD8 + T cells, CD16 + macrophages, and CD163 + macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8 + T cell abundance were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype, nor KRAS, p53, SMAD4, or CDKN2A mutations. Conclusions: Thus, K17 expression correlates with major differences in the immune microenvironment that are independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-mediated immune effects on the immune system could restore the innate immunologic response to PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most deadly form of cancer.

4.
Molecules ; 28(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38067466

ABSTRACT

To date, most research on amyloid aggregation has focused on describing the structure of amyloids and the kinetics of their formation, while the conformational stability of fibrils remains insufficiently explored. The aim of this work was to investigate the effect of amino acid substitutions on the stability of apomyoglobin (ApoMb) amyloids. A study of the amyloid unfolding of ApoMb and its six mutant variants by urea has been carried out. Changes in the structural features of aggregates during unfolding were recorded by far-UV CD and native electrophoresis. It was shown that during the initial stage of denaturation, amyloids' secondary structure partially unfolds. Then, the fibrils undergo dissociation and form intermediate aggregates weighing approximately 1 MDa, which at the last stage of unfolding decompose into 18 kDa monomeric unfolded molecules. The results of unfolding transitions suggest that the stability of the studied amyloids relative to the intermediate aggregates and of the latter relative to unfolded monomers is higher for ApoMb variants with substitutions that increase the hydrophobicity of the residues. The results presented provide a new insight into the mechanism of stabilization of protein aggregates and can serve as a base for further investigations of the amyloids' stability.


Subject(s)
Apoproteins , Myoglobin , Amino Acid Substitution , Myoglobin/chemistry , Protein Structure, Secondary , Apoproteins/chemistry , Amyloid/genetics , Protein Folding , Protein Denaturation
5.
Antioxidants (Basel) ; 12(5)2023 May 07.
Article in English | MEDLINE | ID: mdl-37237924

ABSTRACT

Cytoprotective heme oxygenases derivatize heme to generate carbon monoxide, ferrous iron, and isomeric biliverdins, followed by rapid NAD(P)H-dependent biliverdin reduction to the antioxidant bilirubin. Recent studies have implicated biliverdin IXß reductase (BLVRB) in a redox-regulated mechanism of hematopoietic lineage fate restricted to megakaryocyte and erythroid development, a function distinct and non-overlapping from the BLVRA (biliverdin IXα reductase) homologue. In this review, we focus on recent progress in BLVRB biochemistry and genetics, highlighting human, murine, and cell-based studies that position BLVRB-regulated redox function (or ROS accumulation) as a developmentally tuned trigger that governs megakaryocyte/erythroid lineage fate arising from hematopoietic stem cells. BLVRB crystallographic and thermodynamic studies have elucidated critical determinants of substrate utilization, redox coupling and cytoprotection, and have established that inhibitors and substrates bind within the single-Rossmann fold. These advances provide unique opportunities for the development of BLVRB-selective redox inhibitors as novel cellular targets that retain potential for therapeutic applicability in hematopoietic (and other) disorders.

6.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838891

ABSTRACT

The incorporation of photoproteins into proteins of interest allows the study of either their localization or intermolecular interactions in the cell. Here we demonstrate the possibility of in vivo incorporating the photoprotein Aequorea victoria enhanced green fluorescent protein (EGFP) or Gaussia princeps luciferase (GLuc) into the tetradecameric quaternary structure of GroEL chaperonin and describe some physicochemical properties of the labeled chaperonin. Using size-exclusion and affinity chromatography, electrophoresis, fluorescent and electron transmission microscopy (ETM), small-angle X-ray scattering (SAXS), and bioluminescence resonance energy transfer (BRET), we show the following: (i) The GroEL14-EGFP is evenly distributed within normally divided E. coli cells, while gigantic undivided cells are characterized by the uneven distribution of the labeled GroEL14 which is mainly localized close to the cellular periplasm; (ii) EGFP and likely GLuc are located within the inner cavity of one of the two GroEL chaperonin rings and do not essentially influence the protein oligomeric structure; (iii) GroEL14 containing either EGFP or GLuc is capable of interacting with non-native proteins and the cochaperonin GroES.


Subject(s)
Chaperonins , Escherichia coli , Escherichia coli/metabolism , Luminescent Proteins/metabolism , Scattering, Small Angle , X-Ray Diffraction , Chaperonins/metabolism , Protein Folding , Chaperonin 60/metabolism
7.
Life (Basel) ; 12(11)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36362959

ABSTRACT

The production of recombinant proteins in Escherichia coli cells is often hampered by aggregation of newly synthesized proteins and formation of inclusion bodies. Here we propose the use of transverse urea gradient electrophoresis (TUGE) in testing the capability of folding of a recombinant protein from inclusion bodies dissolved in urea. A plasmid encoding the amino acid sequence 55-224 of TcpA pilin (C-terminal globular domain: TcpA-C) from Vibrio cholerae El Tor enlarged by a His-tag on its N-terminus was expressed in E. coli cells. The major fraction (about 90%) of the target polypeptide was detected in cell debris. The polypeptide was isolated from the soluble fraction and recovered from inclusion bodies after their urea treatment. Some structural properties of the polypeptide from each sample proved identical. The refolding protocol was developed on the basis of TUGE data and successfully used for the protein large-scale recovery from inclusion bodies. Spectral, hydrodynamic, and thermodynamic characteristics of the recombinant TcpA recovered from inclusion bodies indicate the presence of a globular conformation with a pronounced secondary structure and a rigid tertiary structure, which is promising for the design of immunodiagnostics preparations aimed to assess the pilin level in different strains of V. cholerae and to develop cholera vaccines.

8.
Molecules ; 27(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35744948

ABSTRACT

Although oligomeric proteins are predominant in cells, their folding is poorly studied at present. This work is focused on the denaturant- and mutation-induced disassembly of the hexameric mutant Y55W of the Qß host factor (Hfq) from mesophilic Pseudomonas aeruginosa (Pae). Using intrinsic tryptophan fluorescence, dynamic light scattering (DLS), and high-performance liquid chromatography (HPLC), we show that the dissociation of Hfq Y55W occurs either under the effect of GuHCl or during the pre-denaturing transition, when the protein concentration is decreased, with both events proceeding through the accumulation of stable intermediate states. With an extremely low pH of 1.4, a low ionic strength, and decreasing protein concentration, the accumulated trimers and dimers turn into monomers. Also, we report on the structural features of monomeric Hfq resulting from a triple mutation (D9A/V43R/Y55W) within the inter-subunit surface of the protein. This globular and rigidly packed monomer displays a high thermostability and an oligomer-like content of the secondary structure, although its urea resistance is much lower.


Subject(s)
Protein Folding , Pseudomonas aeruginosa , Circular Dichroism , Mutation , Protein Denaturation , Protein Structure, Secondary , Thermodynamics , Tryptophan/chemistry , Urea/pharmacology
9.
Cancer Lett ; 530: 128-141, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35065238

ABSTRACT

Contrary to high doses irradiation (HDR), the biological consequences of dose irradiation (LDR) in breast cancer remain unclear due to the complexity of human epidemiological studies. LDR induces DNA damage that activates p53-mediated tumor-suppressing pathways promoting DNA repair, cell death, and growth arrest. Monoallelic p53 mutations are one of the earliest and the most frequent genetic events in many subtypes of cancer including ErbB2 breast cancer. Using MMTV/ErbB2 mutant p53 (R172H) heterozygous mouse model we found differential p53 genotype-specific effect of LDR vs. HDR on mammary tumorigenesis. Following LDR, mutant p53 heterozygous tumor cells exhibit aberrant ATM/DNA-PK signaling with defects in sensing of double-strand DNA brakes and deficient DNA repair. In contrast, HDR-induced genotoxic stress is sufficient to reach the threshold of DNA damage that is necessary for wtp53 induced DNA repair and cell cycle arrest. As a result, mutant p53 endows dominant-negative effect promoting mammary tumorigenesis after low-impact DNA damage leading to the selection of a genetically unstable proliferative population, with negligible mutagenic effect on tumors carrying wtp53 allele.


Subject(s)
Gamma Rays/therapeutic use , Mutation/radiation effects , Tumor Suppressor Protein p53/genetics , Animals , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/radiation effects , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/radiation effects , DNA Damage/genetics , DNA Damage/radiation effects , DNA Repair/genetics , DNA Repair/radiation effects , DNA-Activated Protein Kinase/genetics , Female , Mice , Mutation/genetics , Receptor, ErbB-2/genetics
10.
Int. j. morphol ; 39(4): 1028-1035, ago. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1385441

ABSTRACT

SUMMARY: The aim of the article was to study changes in periodontal tissues in rats with spontaneous periodontitis (SP) and to evaluate the effect of hyaluronic acid (HA) on the state of the periodontium. Wistar rats with signs of SP were divided into 6 groups: 1) intact group; 2) intact animals with HA "HD-1,0 MDa"; 3) SP group; 4) SP with HA "S-2,4 MDa"; 5) SP with HA "ST-2,4 MDa"; 6) SP with HA "HD-1,0 MDa". The study of the periodontium rats with SP noted the main structural changes (collagen reduction, resorption of alveolar bone, dilatation and stasis of the vessels of the periodontium, gingival papilla and tooth pulp), which were assessed as moderate. Morphological evidence of inflammation was infiltration of neutrophils into the connective tissue of the gums, without the formation of abscesses. Local administration of HA did not cause additional structural damage in periodontal tissues of rats with SP, but also did not affect changes in the microvascular system of periodontium and tooth pulp, periodontal ligaments, only a tendency to inhibit alveolar bone resorption in rats was noted. One can consider the tendency to improve the condition of periodontal tissues in the group of rats injected with high molecular HA and HA with mannitol (2.4 MDa).


RESUMEN: El objetivo del artículo fue estudiar los cambios en los tejidos periodontales en ratas con periodontitis espontánea (PE) y evaluar el efecto del ácido hialurónico (HA) sobre el estado del periodonto. Las ratas Wistar con signos de PE se dividieron en 6 grupos: 1) grupo intacto; 2) animales intactos con HA "HD-1,0 MDa"; 3) grupo PE; 4) PE con HA "S-2,4 MDa"; 5) PE con HA "ST-2,4 MDa"; 6) PE con HA "HD-1,0 MDa". En las ratas con PS se observaron los principales cambios estructurales (reducción de colágeno, reabsorción del hueso alveolar, dilatación y estasis de los vasos del periodonto, papila gingival y pulpa dentaria), que fueron evaluados como moderados. La evidencia morfológica de inflamación fue la infiltración de neutrófilos en el tejido conectivo de las encías, sin la formación de abscesos. La administración local de HA no causó daño estructural adicional en los tejidos periodontales de las ratas con PE, pero tampoco se produjo cambios en el sistema microvascular del periodonto y en la pulpa dental y ligamentos periodontales.Se observó una tendencia a inhibir la resorción del hueso alveolar. Se puede considerar la tendencia a mejorar el estado de los tejidos periodontales en el grupo de ratas inyectadas con HA de alto peso molecular y HA con manitol (2,4 MDa).


Subject(s)
Animals , Rats , Periodontitis , Periodontium/drug effects , Hyaluronic Acid/pharmacology , Rats, Wistar , Inflammation
11.
Breast Cancer Res ; 22(1): 133, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33267874

ABSTRACT

BACKGROUND: Mutations in one allele of the TP53 gene in early stages are frequently followed by the loss of the remaining wild-type p53 (wtp53) allele (p53LOH) during tumor progression. Despite the strong notion of p53LOH as a critical step in tumor progression, its oncogenic outcomes that facilitate the selective pressure for p53LOH occurrence were not elucidated. METHODS: Using MMTV;ErbB2 mouse model of breast cancer carrying heterozygous R172H p53 mutation, we identified a novel gain-of-function (GOF) activity of mutant p53 (mutp53): the exacerbated loss of wtp53 allele in response to γ-irradiation. RESULTS: As consequences of p53LOH in mutp53 heterozygous cells, we observed profound stabilization of mutp53 protein, the loss of p21 expression, the abrogation of G2/M checkpoint, chromosomal instability, centrosome amplification, and transcriptional upregulation of mitotic kinase Nek2 (a member of Never in Mitosis (NIMA) Kinases family) involved in the regulation of centrosome function. To avoid the mitotic catastrophe in the absence of G2/M checkpoint, cells with centrosome amplification adapt Nek2-mediated centrosomes clustering as pro-survival mutp53 GOF mechanism enabling unrestricted proliferation and clonal expansion of cells with p53LOH. Thus, the clonal dominance of mutp53 cells with p53LOH may represent the mechanism of irradiation-induced p53LOH. We show that pharmacological and genetic ablation of Nek2 decreases centrosome clustering and viability of specifically mutp53 cells with p53LOH. CONCLUSION: In a heterogeneous tumor population, Nek2 inhibition may alter the selective pressure for p53LOH by contraction of the mutp53 population with p53LOH, thus, preventing the outgrowth of genetically unstable, more aggressive cells.


Subject(s)
Breast Neoplasms/genetics , Loss of Heterozygosity/genetics , NIMA-Related Kinases/genetics , Tumor Suppressor Protein p53/genetics , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Centrosome/metabolism , Chromosomal Instability , Datasets as Topic , Disease Models, Animal , Female , G2 Phase Cell Cycle Checkpoints/genetics , Gain of Function Mutation , Gene Expression Regulation, Neoplastic/drug effects , Humans , Loss of Heterozygosity/drug effects , Mice , Mice, Transgenic , NIMA-Related Kinases/antagonists & inhibitors , Receptor, ErbB-2/genetics , Transcriptional Activation , Tumor Suppressor Protein p53/metabolism , Up-Regulation
12.
Biomolecules ; 10(1)2020 01 20.
Article in English | MEDLINE | ID: mdl-31968530

ABSTRACT

The main events in chaperone-assisted protein folding are the binding and ligand-induced release of substrate proteins. Here, we studied the location of denatured proteins previously bound to the GroEL chaperonin resulting from the action of the GroES co-chaperonin in the presence of Mg-ATP. Fluorescein-labeled denatured proteins (α-lactalbumin, lysozyme, serum albumin, and pepsin in the presence of thiol reagents at neutral pH, as well as an early refolding intermediate of malate dehydrogenase) were used to reveal the effect of GroES on their interaction with GroEL. Native electrophoresis has demonstrated that these proteins tend to be released from the GroEL-GroES complex. With the use of biotin- and fluorescein-labeled denatured proteins and streptavidin fused with luciferase aequorin (the so-called streptavidin trap), the presence of denatured proteins in bulk solution after GroES and Mg-ATP addition has been confirmed. The time of GroES-induced dissociation of a denatured protein from the GroEL surface was estimated using the stopped-flow technique and found to be much shorter than the proposed time of the GroEL ATPase cycle.


Subject(s)
Chaperonin 10/metabolism , Chaperonin 60/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Protein Folding , Adenosine Triphosphate/metabolism , Animals , Cattle , Protein Binding , Protein Denaturation , Protein Interaction Maps
13.
Commun Biol ; 2: 436, 2019.
Article in English | MEDLINE | ID: mdl-31799437

ABSTRACT

Mutations in one allele of the TP53 gene in cancer early stages are frequently followed by the loss of the remaining wild-type allele (LOH) during tumor progression. However, the clinical impact of TP53 mutations and p53LOH, especially in the context of genotoxic modalities, remains unclear. Using MMTV;ErbB2 model carrying a heterozygous R172H p53 mutation, we report a previously unidentified oncogenic activity of mutant p53 (mutp53): the exacerbation of p53LOH after irradiation. We show that wild-type p53 allele is partially transcriptionally competent and enables the maintenance of the genomic integrity under normal conditions in mutp53 heterozygous cells. In heterozygous cells γ-irradiation promotes mutp53 stabilization, which suppresses DNA repair and the cell cycle checkpoint allowing cell cycle progression in the presence of inefficiently repaired DNA, consequently increases genomic instability leading to p53LOH. Hence, in mutp53 heterozygous cells, irradiation facilitates the selective pressure for p53LOH that enhances cancer cell fitness and provides the genetic plasticity for acquiring metastatic properties.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic/radiation effects , Loss of Heterozygosity/radiation effects , Mutation , Tumor Suppressor Protein p53/genetics , Animals , Biomarkers, Tumor , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/radiation effects , DNA Damage , Disease Models, Animal , Female , Gamma Rays , Genomic Instability , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Mice , Mice, Transgenic , Neoplasm Staging , Prognosis , Treatment Outcome
14.
Cell Death Dis ; 9(6): 621, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29799521

ABSTRACT

Despite success of ERBB2-targeted therapies such as lapatinib, resistance remains a major clinical concern. Multiple compensatory receptor tyrosine kinase (RTK) pathways are known to contribute to lapatinib resistance. The heterogeneity of these adaptive responses is a significant hurdle for finding most effective combinatorial treatments. The goal of this study was to identify a unifying molecular mechanism whose targeting could help prevent and/or overcome lapatinib resistance. Using the MMTV-ERBB2;mutant p53 (R175H) in vivo mouse model of ERBB2-positive breast cancer, together with mouse and human cell lines, we compared lapatinib-resistant vs. lapatinib-sensitive tumor cells biochemically and by kinome arrays and evaluated their viability in response to a variety of compounds affecting heat shock response. We found that multiple adaptive RTKs are activated in lapatinib-resistant cells in vivo, some of which have been previously described (Axl, MET) and some were novel (PDGFRα, PDGFRß, VEGFR1, MUSK, NFGR). Strikingly, all lapatinib-resistant cells show chronically activated HSF1 and its transcriptional targets, heat shock proteins (HSPs), and, as a result, superior tolerance to proteotoxic stress. Importantly, lapatinib-resistant tumors and cells retained sensitivity to Hsp90 and HSF1 inhibitors, both in vitro and in vivo, thus providing a unifying and actionable therapeutic node. Indeed, HSF1 inhibition simultaneously downregulated ERBB2, adaptive RTKs and mutant p53, and its combination with lapatinib prevented development of lapatinib resistance in vitro. Thus, the kinome adaptation in lapatinib-resistant ERBB2-positive breast cancer cells is governed, at least in part, by HSF1-mediated heat shock pathway, providing a novel potential intervention strategy to combat resistance.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Heat Shock Transcription Factors/metabolism , Lapatinib/pharmacology , Receptor, ErbB-2/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , Mice, Inbred C57BL , Proteolysis/drug effects , Tumor Suppressor Protein p53/metabolism
15.
Cell Death Dis ; 8(3): e2661, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28277540

ABSTRACT

Missense mutations in TP53 comprise >75% of all p53 alterations in cancer, resulting in highly stabilized mutant p53 proteins that not only lose their tumor-suppressor activity, but often acquire oncogenic gain-of-functions (GOFs). GOF manifests itself in accelerated tumor onset, increased metastasis, increased drug resistance and shortened survival in patients and mice. A known prerequisite for GOF is mutant p53 protein stabilization, which itself is linked to aberrant protein conformation. However, additional determinants for mutant p53 stabilization likely exist. Here we show that in initially heterozygous mouse tumors carrying the hotspot GOF allele R248Q (p53Q/+), another necessary prerequisite for mutant p53 stabilization and GOF in vivo is loss of the remaining wild-type p53 allele, termed loss-of-heterozygosity (LOH). Thus, in mouse tumors with high frequency of p53 LOH (osteosarcomas and fibrosarcomas), we find that mutant p53 protein is stabilized (16/17 cases, 94%) and tumor onset is significantly accelerated compared with p53+/- tumors (GOF). In contrast, in mouse tumors with low frequency of p53 LOH (MMTV-Neu breast carcinomas), mutant p53 protein is not stabilized (16/20 cases, 80%) and GOF is not observed. Of note, human genomic databases (TCGA, METABRIC etc.) show a high degree of p53 LOH in all examined tumor types that carry missense p53 mutations, including sarcomas and breast carcinomas (with and without HER2 amplification). These data - while cautioning that not all genetic mouse models faithfully represent the human situation - demonstrate for the first time that p53 LOH is a critical prerequisite for missense mutant p53 stabilization and GOF in vivo.


Subject(s)
Breast Neoplasms/genetics , Loss of Heterozygosity/genetics , Tumor Suppressor Protein p53/genetics , Alleles , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Mice , Mutation, Missense/genetics
16.
Oncotarget ; 8(4): 5823-5833, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-27791982

ABSTRACT

Mutations in the p53 tumor suppressor gene are the most prevalent genetic events in human Her2-positive breast cancer and are associated with poor prognosis and survival. Human clinical data and our in vitro and in vivo studies strongly suggest potent oncogenic cooperation between mutant p53 and Her2 (ErbB2). Yet, the translational significance of mutant p53 in Her2 positive breast cancer, especially with respect to Her2-targeted therapies, has not been evaluated. Our previous work identified novel oncogenic activity of mutant p53 whereby mutp53 amplifies ErbB2 signaling via the mutp53-HSF1-ErbB2 feed-forward loop. Here we report that pharmacological interception of this circuit by ErbB2 inhibitor lapatinib downregulates mutant p53 in vitro and in vivo. We found that ErbB2 inhibition by lapatinib inhibits transcription factor HSF1, and its target Hsp90, followed by mutant p53 degradation in MDM2 dependent manner. Thus, our data suggest that mutant p53 sensitizes cancer cells to lapatinib via two complementary mechanisms: mutant p53 mediated amplification of ErbB2 signaling, and simultaneous annihilation of both potent oncogenic drivers, ErbB2 and mutant p53. Hence, our study could provide valuable information for the optimization of therapeutic protocols to achieve superior clinical effects in the treatment of Her2 positive breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Quinazolines/administration & dosage , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Down-Regulation , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lapatinib , Mice , Mutation , Protein Kinase Inhibitors/pharmacology , Proteolysis , Quinazolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
18.
Article in English | MEDLINE | ID: mdl-25954247

ABSTRACT

The main tumor suppressor function of p53 as a "guardian of the genome" is to respond to cellular stress by transcriptional activation of apoptosis, growth arrest, or senescence in damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic alteration in human cancers. Importantly, mutant p53 (mutp53) proteins not only lose their wild-type tumor suppressor activity but also can actively promote tumor development. Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic activities known as gain-of-function (GOF). Here, we discuss a novel mechanism of mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery. This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic stress and provides both, a strong survival advantage to cancer cells and a promising means for therapeutic intervention.

19.
Mol Cancer Res ; 13(4): 743-54, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25573952

ABSTRACT

UNLABELLED: The EGFR family (ErbB2/Her2 and EGFR/ErbB1/Her1) often modulates the transcriptional program involved in promoting mammary tumorigenesis. In humans, the majority of ErbB2-positive sporadic breast cancers harbor p53 mutations, which correlate with poor prognosis. Also, the extremely high incidence of ErbB2-positive breast cancer in women with p53 germline mutations (Li-Fraumeni syndrome) suggests a key role of mutant p53 specifically in ErbB2-mediated mammary tumorigenesis. To examine the role of mutant p53 during ErbB2-mediated mammary tumorigenesis, a mutant p53 allele (R172H) was introduced into the (MMTV)-ErbB2/Neu mouse model system. Interestingly, we show in heterozygous p53 mice that mutant p53 R172H is a more potent activator of ErbB2-mediated mammary tumorigenesis than simple loss of p53. The more aggressive disease in mutant p53 animals was reflected by earlier tumor onset, increased mammary tumor multiplicity, and shorter survival. These in vivo and in vitro data provide mechanistic evidence that mutant p53 amplifies ErbB2 and EGFR signaling to promote the expansion of mammary stem cells and induce cell proliferation. IMPLICATIONS: This study identifies mutant p53 as an essential player in ErbB2 and EGFR-mediated mammary tumorigenesis and indicates the potential translational importance of targeting mutant p53 in this subset of patients with breast cancer.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Mutation , Signal Transduction , Tumor Suppressor Protein p53/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/metabolism , Cell Line, Tumor , Cell Proliferation , ErbB Receptors/metabolism , Female , Humans , Mammary Neoplasms, Experimental , Mice , Neoplastic Stem Cells/pathology , Receptor, ErbB-2/genetics , Survival Analysis , Tumor Suppressor Protein p53/metabolism
20.
J Exp Med ; 209(2): 275-89, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22271573

ABSTRACT

Intracellular macrophage migration inhibitory factor (MIF) often becomes stabilized in human cancer cells. MIF can promote tumor cell survival, and elevated MIF protein correlates with tumor aggressiveness and poor prognosis. However, the molecular mechanism facilitating MIF stabilization in tumors is not understood. We show that the tumor-activated HSP90 chaperone complex protects MIF from degradation. Pharmacological inhibition of HSP90 activity, or siRNA-mediated knockdown of HSP90 or HDAC6, destabilizes MIF in a variety of human cancer cells. The HSP90-associated E3 ubiquitin ligase CHIP mediates the ensuing proteasome-dependent MIF degradation. Cancer cells contain constitutive endogenous MIF-HSP90 complexes. siRNA-mediated MIF knockdown inhibits proliferation and triggers apoptosis of cultured human cancer cells, whereas HSP90 inhibitor-induced apoptosis is overridden by ectopic MIF expression. In the ErbB2 transgenic model of human HER2-positive breast cancer, genetic ablation of MIF delays tumor progression and prolongs overall survival of mice. Systemic treatment with the HSP90 inhibitor 17AAG reduces MIF expression and blocks growth of MIF-expressing, but not MIF-deficient, tumors. Together, these findings identify MIF as a novel HSP90 client and suggest that HSP90 inhibitors inhibit ErbB2-driven breast tumor growth at least in part by destabilizing MIF.


Subject(s)
Apoptosis/physiology , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Multiprotein Complexes/metabolism , Animals , Apoptosis/genetics , Benzoquinones/pharmacology , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Primers/genetics , Densitometry , Female , Flow Cytometry , Gene Knockdown Techniques , HSP90 Heat-Shock Proteins/genetics , Humans , Image Processing, Computer-Assisted , Immunoblotting , Immunohistochemistry , Immunoprecipitation , Lactams, Macrocyclic/pharmacology , Mice , Mice, Transgenic , Protein Stability , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Receptor, ErbB-2 , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...