Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 200: 107761, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209454

ABSTRACT

Forest trees are subjected to multiple stressors during their long lifetime and therefore require effective and finely regulated stress-protective systems. Stressors can induce protective systems either directly or with the involvement of stress memory mechanisms. Stress memory has only begun to be uncovered in model plants and is unexplored in coniferous species. Therefore, we studied the possible role of stress memory in the regulation of the accumulation of stress-protective compounds (heat shock proteins, dehydrins, proline) in the needles of naturally grown Scots pine and Norway spruce trees subjected to the subsequent action of long-term (multiyear) and short-term (seasonal) water shortages. Although the water deficit was relatively mild, it significantly influenced the pattern of expression of stress memory-related heat shock factor (HSF) and SWI/SNF genes, indicating the formation of stress memory in both species. In spruce, dehydrin accumulation was increased by water shortage in a manner compatible with Type II stress memory. The accumulation of HSP40 in spruce needles was positively influenced by long-term water shortage, but this increase was unlikely to be of biological importance due to the concomitant decrease in HSP70, HSP90 and HSP101 accumulation. Finally, proline accumulation was negatively influenced by short-term water deficit in spruce. In pine, no one protective compound accumulated in response to water stress. Taken together, the results indicate that the accumulation of stress-protective compounds was generally independent of stress memory effects both in pine and in spruce.


Subject(s)
Picea , Pinus sylvestris , Pinus , Droughts , Picea/metabolism , Seedlings/metabolism , Pinus sylvestris/metabolism
2.
Plants (Basel) ; 11(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36235518

ABSTRACT

The deterioration of plant mineral nutrition during drought is a significant factor in the negative influence of drought on plant performance. We aimed to study the effects of seasonal and multiyear water shortages on nutrient supply and demand in Scots pine and Norway spruce. We studied pine and spruce trees naturally grown in the Bryansk region (Russia). The dynamics of several nutrients (K, Ca, Mg, P, Fe, Mn, Zn, and Ca) in wood, needles, and bark of current-year twigs and the dynamics of the available pools of these elements at different soil depths were analysed. To assess the physiological consequences of changes in element concentrations, lipid peroxidation products and photosynthetic pigments were measured in the needles. Water shortage increased the wood concentrations of all elements except for Mn. In pine, this increase was mainly due to seasonal water deficit, whereas in spruce, multiyear differences in water supply were more important. This increased availability of nutrients was not observed in soil-based analyses. In needles, quite similar patterns of changes were found between species, with Mg increasing almost twofold and Fe and Mn decreasing under water shortage, whereas the remainder of the elements did not change much under differing water supplies. Neither the concentrations of photosynthetic pigments nor the contents of lipid peroxidation products correlated with element dynamics in needles. In summary, water shortage increased the availability of all elements except Mn for the plant; however, needle element contents were regulated independently of element availability for plants.

3.
Environ Pollut ; 243(Pt B): 1383-1393, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30273865

ABSTRACT

We investigated the long-term impact of the largest Russian cement plant on mesopodzol sandy soils and Scots pine stands. We determined the distributions of the total and available pools of Ca, Mg, K, Na, Mn, Fe, Zn, Ni, Cu, Pb and Cd in the soil profile to a depth of 60 cm (illuvial horizon) as well as the accumulation patterns of these elements in the vegetative and generative organs of Scots pine trees. High Ca accumulation in the impact zone soils was a result of CaO emissions by a cement plant. Also, CaO became the main cause of soil profile alkalization due to neutralization of soil acids and formation of calcium hydroxide or carbonates. Alkalization immobilized substantial amounts of Fe, Mn, Zn and Ni in the soil, reducing their availability. The most prominent effect of long-term cement production was a prominent Mn deficiency in vegetative and generative Scots pine organs due to the exhaustion of the available Mn pool in the illuvial horizon. The miniaturization of cones, a decrease in seed yield and a reduction in seed germinability were observed in the emission impact zones. Pretreatment of Mn-deficient seeds with manganese eliminated Mn deficiency but did not increase seed germination.


Subject(s)
Environmental Monitoring , Pinus/chemistry , Soil Pollutants/analysis , Soil/chemistry , Construction Materials , Manganese , Metals, Heavy/analysis , Pinus sylvestris , Russia , Seeds/chemistry , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...