Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Assist Reprod Genet ; 41(2): 333-345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38231285

ABSTRACT

PURPOSE: This study aimed to evaluate the epigenetic reprogramming of ICR1 (KvDMR1) and ICR2 (H19DMR) and expression of genes controlled by them as well as those involved in methylation, demethylation, and pluripotency. METHODS: We collected germinal vesicle (GV) and metaphase II (MII) oocytes, and preimplantation embryos at five stages [zygote, 4-8 cells, 8-16 cells, morula, and expanded blastocysts (ExB)]. DNA methylation was assessed by BiSeq, and the gene expression was evaluated using qPCR. RESULTS: H19DMR showed an increased DNA methylation from GV to MII oocytes (68.04% and 98.05%, respectively), decreasing in zygotes (85.83%) until morula (61.65%), and ExB (63.63%). H19 and IGF2 showed increased expression in zygotes, which decreased in further stages. KvDMR1 was hypermethylated in both GV (71.82%) and MII (69.43%) and in zygotes (73.70%) up to morula (77.84%), with a loss of methylation at the ExB (36.64%). The zygote had higher expression of most genes, except for CDKN1C and PHLDA2, which were highly expressed in MII and GV oocytes, respectively. DNMTs showed increased expression in oocytes, followed by a reduction in the earliest stages of embryo development. TET1 was downregulated until 4-8-cell and upregulated in 8-16-cell embryos. TET2 and TET3 showed higher expression in oocytes, and a downregulation in MII oocytes and 4-8-cell embryo. CONCLUSION: We highlighted the heterogeneity in the DNA methylation of H19DMR and KvDMR1 and a dynamic expression pattern of genes controlled by them. The expression of DNMTs and TETs genes was also dynamic owing to epigenetic reprogramming.


Subject(s)
Blastocyst , Oocytes , Humans , Animals , Cattle , Oocytes/metabolism , Blastocyst/metabolism , DNA Methylation/genetics , Zygote/physiology , Embryonic Development/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
2.
Genet Sel Evol ; 47: 20, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25887840

ABSTRACT

BACKGROUND: In previous studies on an Iberian x Landrace cross, we have provided evidence that supported the porcine ELOVL6 gene as the major causative gene of the QTL on pig chromosome 8 for palmitic and palmitoleic acid contents in muscle and backfat. The single nucleotide polymorphism (SNP) ELOVL6:c.-533C > T located in the promoter region of ELOVL6 was found to be highly associated with ELOVL6 expression and, accordingly, with the percentages of palmitic and palmitoleic acids in longissimus dorsi and adipose tissue. The main goal of the current work was to further study the role of ELOVL6 on these traits by analyzing the regulation of the expression of ELOVL6 and the implication of ELOVL6 polymorphisms on meat quality traits in pigs. RESULTS: High-throughput sequencing of BAC clones that contain the porcine ELOVL6 gene coupled to RNAseq data re-analysis showed that two isoforms of this gene are expressed in liver and adipose tissue and that they differ in number of exons and 3'UTR length. Although several SNPs in the 3'UTR of ELOVL6 were associated with palmitic and palmitoleic acid contents, this association was lower than that previously observed with SNP ELOVL6:c.-533C > T. This SNP is in full linkage disequilibrium with SNP ELOVL6:c.-394G > A that was identified in the binding site for estrogen receptor alpha (ERα). Interestingly, the ELOVL6:c.-394G allele is associated with an increase in methylation levels of the ELOVL6 promoter and with a decrease of ELOVL6 expression. Therefore, ERα is clearly a good candidate to explain the regulation of ELOVL6 expression through dynamic epigenetic changes in the binding site of known regulators of ELOVL6 gene, such as SREBF1 and SP1. CONCLUSIONS: Our results strongly suggest the ELOVL6:c.-394G > A polymorphism as the causal mutation for the QTL on pig chromosome 8 that affects fatty acid composition in pigs.


Subject(s)
Epigenesis, Genetic/physiology , Fatty Acids/metabolism , Mutation , Polymorphism, Single Nucleotide/physiology , Quantitative Trait Loci , Adipose Tissue/physiology , Alleles , Animals , Chromosomes, Mammalian , Crosses, Genetic , DNA/analysis , Linkage Disequilibrium , Sus scrofa/genetics , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...