Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(32): eabc0413, 2020 08.
Article in English | MEDLINE | ID: mdl-32821843

ABSTRACT

Intravenous drug self-administration is considered the "gold standard" model to investigate the neurobiology of drug addiction in rodents. However, its use in mice is limited by frequent complications of intravenous catheterization. Given the many advantages of using mice in biomedical research, we developed a noninvasive mouse model of opioid self-administration using vaporized fentanyl. Mice readily self-administered fentanyl vapor, titrated their drug intake, and exhibited addiction-like behaviors, including escalation of drug intake, somatic signs of withdrawal, drug intake despite punishment, and reinstatement of drug seeking. Electrophysiological recordings from ventral tegmental area dopamine neurons showed a lower amplitude of GABAB receptor-dependent currents during protracted abstinence from fentanyl vapor self-administration. This mouse model of fentanyl self-administration recapitulates key features of opioid addiction, overcomes limitations of the intravenous model, and allows investigation of the neurobiology of opioid addiction in unprecedented ways.


Subject(s)
Fentanyl , Opioid-Related Disorders , Analgesics, Opioid , Animals , Drug-Seeking Behavior , Mice , Self Administration
2.
Behav Genet ; 47(5): 552-563, 2017 09.
Article in English | MEDLINE | ID: mdl-28822047

ABSTRACT

The SHR and SLA16 inbred strains present behavioral differences in anxiety/emotionality that could be under the influence of dopaminergic neurotransmission. In order to investigate the role of D2 receptors in modulating such differences, an agonist (quinpirole) and an antagonist (haloperidol) of this receptor were administered, either via systemic injection (IP), or microinjected into the ventral area of the hippocampus (vHIP). Quinpirole and haloperidol IP decreased locomotor activity, only in SLA16 rats in the open-field (OF), and in both strains in the elevated plus-maze (EPM). Quinpirole also increased the preference for the aversive areas of the EPM. Quinpirole vHIP decreased locomotor activity in both strains. Haloperidol vHIP did not elicit behavioural changes and no differences in the levels of D2 receptors and of dopamine transporter in the hippocampus were found. Results indicate that systemic activation/blocking of D2 receptors caused a strain-dependent hypolocomotion, whereas activation of D2 receptors in the vHIP, but not D2 receptor antagonism, regardless of dose, decreased general locomotor activity in the two strains. Therefore, we suggest that genomic differences in the chromosome 4 can influence the locomotor activity regulated by the D2 dopaminergic receptor, especially in the vHIP.


Subject(s)
Behavior, Animal/drug effects , Locomotion/drug effects , Rats, Mutant Strains/metabolism , Animals , Anxiety , Dopamine/metabolism , Dopamine D2 Receptor Antagonists/metabolism , Drug Administration Routes , Haloperidol/pharmacology , Hippocampus/drug effects , Male , Motor Activity/physiology , Quinpirole/metabolism , Quinpirole/pharmacology , Rats , Rats, Inbred SHR/genetics , Rats, Inbred SHR/metabolism , Rats, Mutant Strains/genetics , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...