Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 32(2): 101255, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38715734

ABSTRACT

Gene silencing without gene editing holds great potential for the development of safe therapeutic applications. Here, we describe a novel strategy to concomitantly repress multiple genes using zinc finger proteins fused to Krüppel-Associated Box repression domains (ZF-Rs). This was achieved via the optimization of a lentiviral system tailored for the delivery of ZF-Rs in hematopoietic cells. We showed that an optimal design of the lentiviral backbone is crucial to multiplex up to three ZF-Rs or two ZF-Rs and a chimeric antigen receptor. ZF-R expression had no impact on the integrity and functionality of transduced cells. Furthermore, gene repression in ZF-R-expressing T cells was highly efficient in vitro and in vivo during the entire monitoring period (up to 10 weeks), and it was accompanied by epigenetic remodeling events. Finally, we described an approach to improve ZF-R specificity to illustrate the path toward the generation of ZF-Rs with a safe clinical profile. In conclusion, we successfully developed an epigenetic-based cell engineering approach for concomitant modulation of multiple gene expressions that bypass the risks associated with DNA editing.

2.
Mol Ther Methods Clin Dev ; 31: 101111, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37790246

ABSTRACT

B cells can differentiate into plasmablast and plasma cells, capable of producing antibodies for decades. Gene editing using zinc-finger nucleases (ZFN) enables the engineering of B cells capable of secreting sustained and high levels of therapeutic proteins. In this study, we established an advanced in vitro good manufacturing practice-compatible culturing system characterized by robust and consistent expansion rate, high viability, and efficient B cell differentiation. Using this process, an optimized B cell editing protocol was developed by combining ZFN/adeno-associated virus 6 technology to achieve site-specific insertion of the human factor IX R338L Padua into the silent TRAC locus. In vitro analysis revealed high levels of secreted human immunoglobulins and human factor IX-Padua. Following intravenous infusion in a mouse model, human plasma cells were detected in spleen and bone marrow, indicating successful and potentially long-term engraftment in vivo. Moreover, high levels of human immunoglobin and therapeutic levels of human factor IX-Padua were detected in mouse plasma, correlating with 15% of normal human factor IX activity. These data suggest that the proposed process promotes the production of functional and differentiated engineered B cells. In conclusion, this study represents an important step toward the development of a manufacturing platform for potential B cell-derived therapeutic products.

3.
Invest Ophthalmol Vis Sci ; 56(11): 6456-66, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26447979

ABSTRACT

PURPOSE: To evaluate the therapeutic potential of Col-Treg, a collagen II-specific type 1 regulatory T-cell immunotherapy for the treatment of noninfectious uveitis (NIU). METHODS: Col-Treg cells were produced from collagen II-specific T cell receptor (TCR) transgenic mice or peripheral blood of healthy donors. Phenotypic characterization was performed by flow cytometry, and cytokine secretion was evaluated with Flowcytomix or ELISA. In vitro functional characterization included ATP hydrolysis, cytotoxicity, and contact-independent T-cell suppression and plasticity assays. Col-Treg migration was assessed by quantitative PCR specific to Col-Treg TCR. Col-Treg cells were administered intravenously in mice displaying experimental autoimmune uveitis (EAU) induced by interphotoreceptor retinoid-binding protein (IRBP) immunizations. Efficacy of Col-Treg was assessed by ophthalmology, histology, and immunohistochemistry. RESULTS: Mice Col-Treg cells displayed identity features of type 1 Treg cells with expression of CD25, FoxP3, low surface expression of CD127, and cytokine secretion profile (IL-10(high), IL-4(low), IFN-γ(int)). In vitro functional assays demonstrated Col-Treg suppressive capacity via soluble factor-dependent immunosuppression, cytotoxicity, and ATP hydrolysis. Col-Treg cells expressed granzyme B, CD39, and glucocorticoid-induced TNF-related protein (GITR). Administration of Col-Treg in EAU mice inhibited clinical and morphologic signs of uveitis and decreased ocular leukocyte infiltration. Col-Treg cells homed in the ocular tissues 24 hours after intravenous injection. Human Col-Treg cells were comparable to mice Col-Treg cells in identity and function and did not show the capacity to differentiate into Th17 cells in vitro. CONCLUSIONS: These results demonstrate the therapeutic potential of Col-Treg cells as a targeted approach for the treatment of NIU and the feasibility of translating this approach to the human clinical setting.


Subject(s)
Collagen Type II/administration & dosage , Immunity, Cellular , Immunotherapy/methods , T-Lymphocytes, Regulatory/immunology , Uveitis/therapy , Animals , Collagen Type II/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Injections, Intravenous , Mice , Mice, Inbred DBA , Mice, Transgenic , Uveitis/immunology , Uveitis/pathology
4.
Arthritis Res Ther ; 16(3): R115, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24886976

ABSTRACT

INTRODUCTION: Regulatory T (Treg) cells play a crucial role in preventing autoimmune diseases and are an ideal target for the development of therapies designed to suppress inflammation in an antigen-specific manner. Type 1 regulatory T (Tr1) cells are defined by their capacity to produce high levels of interleukin 10 (IL-10), which contributes to their ability to suppress pathological immune responses in several settings. The aim of this study was to evaluate the therapeutic potential of collagen type II-specific Tr1 (Col-Treg) cells in two models of rheumatoid arthritis (RA) in mice. METHODS: Col-Treg clones were isolated and expanded from collagen-specific TCR transgenic mice. Their cytokine secretion profile and phenotype characterization were studied. The therapeutic potential of Col-Treg cells was evaluated after adoptive transfer in collagen-antibody- and collagen-induced arthritis models. The in vivo suppressive mechanism of Col-Treg clones on effector T-cell proliferation was also investigated. RESULTS: Col-Treg clones are characterized by their specific cytokine profile (IL-10(high)IL-4(neg)IFN-γ(int)) and mediate contact-independent immune suppression. They also share with natural Tregs high expression of GITR, CD39 and granzyme B. A single infusion of Col-Treg cells reduced the incidence and clinical symptoms of arthritis in both preventive and curative settings, with a significant impact on collagen type II antibodies. Importantly, injection of antigen-specific Tr1 cells decreased the proliferation of antigen-specific effector T cells in vivo significantly. CONCLUSIONS: Our results demonstrate the therapeutic potential of Col-Treg cells in two models of RA, providing evidence that Col-Treg could be an efficient cell-based therapy for RA patients whose disease is refractory to current treatments.


Subject(s)
Adoptive Transfer/methods , Arthritis, Experimental/immunology , Arthritis, Experimental/therapy , Collagen Type II/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation , Animals , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/therapy , Cell Proliferation , Cells, Cultured , Flow Cytometry , Humans , Immunophenotyping , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukin-4/immunology , Interleukin-4/metabolism , Mice, Congenic , Mice, Inbred BALB C , Mice, Inbred DBA , Mice, Transgenic , Ovalbumin/immunology , Peptide Fragments/immunology , T-Lymphocytes, Regulatory/metabolism , Treatment Outcome
5.
Biochem J ; 361(Pt 3): 621-7, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11802792

ABSTRACT

Mouse embryonic stem (ES) cells are pluripotent cells that differentiate into multiple cell lineages. The commitment of ES cells into the adipocyte lineage is dependent on an early 3-day treatment with all-trans retinoic acid (RA). To characterize the molecular mechanisms underlying this process, we examined the contribution of the extracellular-signal-regulated kinase (ERK) pathway. Treatment of ES cell-derived embryoid bodies with RA resulted in a prolonged activation of the ERK pathway, but not the c-Jun N-terminal kinase, p38 mitogen-activated protein kinase or phosphoinositide 3-kinase pathways. To investigate the role of ERK activation, co-treatment of RA with PD98059, a specific inhibitor of the ERK signalling pathway, prevented both adipocyte formation and expression of the adipogenic markers, adipocyte lipid-binding protein and peroxisome-proliferator-activated receptor gamma. Furthermore, we show that ERK activation is required only during RA treatment. PD98059 does not interfere with the commitment of ES cells into other lineages, such as neurogenesis, myogenesis and cardiomyogenesis. As opposed to the controversial role of the ERK pathway in terminal differentiation, our results clearly demonstrate that this pathway is specifically required at an early stage of adipogenesis, corresponding to the RA-dependent commitment of ES cells.


Subject(s)
Adipocytes/cytology , Embryo, Mammalian/cytology , Mitogen-Activated Protein Kinases/metabolism , Stem Cells/cytology , Tretinoin/metabolism , Adipocytes/metabolism , Animals , Butadienes/pharmacology , Cell Lineage , Enzyme Activation , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Imidazoles/pharmacology , JNK Mitogen-Activated Protein Kinases , Mice , Myocardium/cytology , Neurons/metabolism , Nitriles/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Pyridines/pharmacology , RNA/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Time Factors , Transcription Factors/metabolism , Tretinoin/pharmacology , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...