Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(10)2022 May 15.
Article in English | MEDLINE | ID: mdl-35632170

ABSTRACT

In modern trends, wireless sensor networks (WSNs) are interesting, and distributed in the environment to evaluate received data. The sensor nodes have a higher capacity to sense and transmit the information. A WSN contains low-cost, low-power, multi-function sensor nodes, with limited computational capabilities, used for observing environmental constraints. In previous research, many energy-efficient routing methods were suggested to improve the time of the network by minimizing energy consumption; sometimes, the sensor nodes run out of power quickly. The majority of recent articles present various methods aimed at reducing energy usage in sensor networks. In this paper, an energy-efficient clustering/routing technique, called the energy and distance based multi-objective red fox optimization algorithm (ED-MORFO), was proposed to reduce energy consumption. In each communication round of transmission, this technique selects the cluster head (CH) with the most residual energy, and finds the optimal routing to the base station. The simulation clearly shows that the proposed ED-MORFO achieves better performance in terms of energy consumption (0.46 J), packet delivery ratio (99.4%), packet loss rate (0.6%), end-to-end delay (11 s), routing overhead (0.11), throughput (0.99 Mbps), and network lifetime (3719 s), when compared with existing MCH-EOR and RDSAOA-EECP methods.

2.
Sensors (Basel) ; 21(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960447

ABSTRACT

Nowadays, a large number of digital data are transmitted worldwide using wireless communications. Therefore, data security is a significant task in communication to prevent cybercrimes and avoid information loss. The Advanced Encryption Standard (AES) is a highly efficient secure mechanism that outperforms other symmetric key cryptographic algorithms using message secrecy. However, AES is efficient in terms of software and hardware implementation, and numerous modifications are done in the conventional AES architecture to improve the performance. This research article proposes a significant modification to the AES architecture's key expansion section to increase the speed of producing subkeys. The fork-join model of key expansion (FJMKE) architecture is developed to improve the speed of the subkey generation process, whereas the hardware resources of AES are minimized by avoiding the frequent computation of secret keys. The AES-FJMKE architecture generates all of the required subkeys in less than half the time required by the conventional architecture. The proposed AES-FJMKE architecture is designed and simulated using the Xilinx ISE 5.1 software. The Field Programmable Gate Arrays (FPGAs) behaviour of the AES-FJMKE architecture is analysed by means of performance count for hardware resources, delay, and operating frequency. The existing AES architectures such as typical AES, AES-PNSG, AES-AT, AES-BE, ISAES, AES-RS, and AES-MPPRM are used to evaluate the efficiency of AES-FJMKE. The AES-FJMKE implemented using Spartan 6 FPGA used fewer slices (i.e., 76) than the AES-RS.

3.
Sensors (Basel) ; 20(6)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204390

ABSTRACT

Docker containers are the lightweight-virtualization technology prevailing today for the provision of microservices. This work raises and discusses two main challenges in Docker containers' scheduling in cloud-fog-internet of things (IoT) networks. First, the convenience to integrate intelligent containers' schedulers based on soft-computing in the dominant open-source containers' management platforms: Docker Swarm, Google Kubernetes and Apache Mesos. Secondly, the need for specific intelligent containers' schedulers for the different interfaces in cloud-fog-IoT networks: cloud-to-fog, fog-to-IoT and cloud-to-fog. The goal of this work is to support the optimal allocation of microservices provided by the main cloud service providers today and used by millions of users worldwide in applications such as smart health, content delivery networks, smart health, etc. Particularly, the improvement is studied in terms of quality of service (QoS) parameters such as latency, load balance, energy consumption and runtime, based on the analysis of previous works and implementations. Moreover, the scientific-technical impact of smart containers' scheduling in the market is also discussed, showing the possible repercussion of the raised opportunities in the research line.

4.
Sensors (Basel) ; 20(3)2020 Jan 27.
Article in English | MEDLINE | ID: mdl-32012791

ABSTRACT

The monitoring of a structural condition of steel bridges is an important issue. Good condition of infrastructure facilities ensures the safety and economic well-being of society. At the same time, due to the continuous development, rising wealth of the society and socio-economic integration of countries, the number of infrastructural objects is growing. Therefore, there is a need to introduce an easy-to-use and relatively low-cost method of bridge diagnostics. We can achieve these benefits by the use of Unmanned Aerial Vehicle-Based Remote Sensing and Digital Image Processing. In our study, we present a state-of-the-art framework for Structural Health Monitoring of steel bridges that involves literature review on steel bridges health monitoring, drone route planning, image acquisition, identification of visual markers that may indicate a poor condition of the structure and determining the scope of applicability. The presented framework of image processing procedure is suitable for diagnostics of steel truss riveted bridges. In our considerations, we used photographic documentation of the Fitzpatrick Bridge located in Tallassee, Alabama, USA.

SELECTION OF CITATIONS
SEARCH DETAIL
...