Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(36): 32998-33005, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37720771

ABSTRACT

The molecular beam epitaxy (MBE) technique is renowned as the most suitable for the growth of high-quality crystalline materials and nanostructures such as GaAs. However, once established, optimal growth parameters required for repeatability of top-quality structures may be easily lost as MBE is highly sensitive to any changes in the system. Especially, routine servicing procedures, which include any activity which requires unsealing of the growth chamber, are devastating for developed growth parameters and force the necessity of recalibration. In this work, we present the process of growth parameter pre-optimization for obtaining homoepitaxial GaAs layers after servicing and restarting the MBE system. Namely, we present how each step of reestablishing optimal growth condition influences various characteristics of obtained GaAs layers. Those include in situ, structural, and spectral measurement techniques. An additional aspect was to compare the optimal conditions for the growth of homoepitaxial GaAs layers from two growth campaigns in which the main difference is the addition of an ion pump and increasing the temperature gradient on the Ga cell.

2.
Materials (Basel) ; 16(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903083

ABSTRACT

We demonstrate strain-balanced InAs/AlSb type-II superlattices (T2SL) grown on GaSb substrates employing two kinds of interfaces (IFs): AlAs-like IF and InSb-like IF. The structures are obtained by molecular beam epitaxy (MBE) for effective strain management, simplified growth scheme, improved material crystalline quality, and improved surface quality. The minimal strain T2SL versus GaSb substrate can be achieved by a special shutters sequence during MBE growth that leads to the formation of both interfaces. The obtained minimal mismatches of the lattice constants is smaller than that reported in the literature. The in-plane compressive strain of 60-period InAs/AlSb T2SL 7ML/6ML and 6ML/5ML was completely balanced by the applied IFs, which is confirmed by the HRXRD measurements. The results of the Raman spectroscopy (measured along the direction of growth) and surface analyses (AFM and Nomarski microscopy) of the investigated structures are also presented. Such InAs/AlSb T2SL can be used as material for a detector in the MIR range and, e.g., as a bottom n-contact layer as a relaxation region for a tuned interband cascade infrared photodetector.

3.
Materials (Basel) ; 14(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34639953

ABSTRACT

(1) Background: The shrinkage of water resources, as well as the deterioration of its quality as a result of industrial human activities, requires a comprehensive approach relative to its protection. Advanced oxidation processes show high potential for the degradation of organic pollutants in water and wastewater. TiO2 is the most popular photocatalyst because of its oxidizing ability, chemical stability and low cost. The major drawback of using it in powdered form is the difficulty of separation from the reaction mixture. The solution to this problem may be immobilization on a support (glass beads, molecular sieves, etc.). In order to avoid these difficulties, the authors propose to prepare a catalyst as a titanium plate covered with an oxide layer obtained with laser treatment. (2) Methods: In the present work, we generated titanium oxide structures using a cheap and fast method based on femtosecond laser pulses. The structurized plates were tested in the reaction of methylene blue (MB) degradation under UVA irradiation (365 nm). The photocatalytic activity and kinetic properties for the degradation of MB are provided. (3) Results: Studies of X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm a titanium oxide layer with laser-induced generated structures that are called "spikes" and "herringbones". The structurized plates were effective photocatalysts, and their activity depends on the structure of the oxide layer (spike and herringbone). (4) Conclusions: The immobilization of the catalyst on a solid support can be performed in a fast and reproducible manner by using the technique of laser ablation. The layers obtained with this method have been shown to have catalytic properties.

4.
Materials (Basel) ; 14(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925525

ABSTRACT

In this work, the diffraction of a Gaussian beam on a volume phase grating was researched theoretically and numerically. The proposed method is based on rigorous coupled-wave analysis (RCWA) and Fourier transform. The Gaussian beam is decomposed into plane waves using the Fourier transform. The number of plane waves is determined using the sampling theorem. The complex reflected and transmitted amplitudes are calculated for each RCWA plane wave. The distribution of the fields along the grating for the reflected and transmitted waves is determined using inverse Fourier transform. The powers of the reflected and transmitted waves are determined based on these distributions. Our method shows that the energy conservation law is satisfied for the phase grating. That is, the power of the incident Gaussian beam is equal to the sum of the powers of the reflected and transmitted beams. It is demonstration of our approach correctness. The numerous studies have shown that the spatial shapes of the reflected and transmitted beams differ from the Gaussian beam under resonance. In additional, the waveguide mode appears also in the grating. The spatial forms of the reflected and transmitted beams are Gaussian in the absence of resonance. It was found that the width of the resonance curves is wider for the Gaussian beam than for the plane wave. However, the spectral and angular sensitivities are the same as for the plane wave. The resonant wavelengths are slightly different for the plane wave and the Gaussian beam. Numerical calculations for four refractive index modulation coefficients of the grating medium were carried out by the proposed method. The widths of the resonance curves decrease with the increasing in the refractive index modulation. Moreover, the reflection coefficient also increases.

SELECTION OF CITATIONS
SEARCH DETAIL
...