Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Chem ; 61(6): 337-344, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36852760

ABSTRACT

A continuing priority is to better understand and resolve the barriers to using nonuniform sampling (NUS) in challenging small molecule 2D NMR with subsampling of the Nyquist grid (a.k.a. coverage) below 50%. Possible causes for artifacts, often termed sampling noise, in 1D-NUS of 2D-NMR are revisited here, where weak aliasing artifacts are a growing concern as NUS becomes sparser. As NUS schedules become sparser, repeat sequences are shown to occur in the dense sampling regions early in the sampling schedule, causing aliasing artifacts in resulting spectra. An intuitive screening approach that detects patterns in sampling schedules based on a convolutional filter was implemented. Sampling schedules that have low proportions of repeat sequences show significantly reduced artifacts. Another route to remediate early repeat sequences is a short period of uniform sampling at the beginning of the schedule, which also leads to a significant suppression of unwanted sampling noise. Combining the repeat sequence filter with a survey of HSQC and LR-HSQMBC experiments, it is shown that very short initial uniform regions of about 2%-4% of the sampling space can ameliorate repeat sequences in sparser NUS and lead to robust spectral reconstructions by iterative soft thresholding (IST), even when the point spread function is unchanged. Using the principles developed here, a suite of 'one-click' schedules was developed for broader use.

2.
Sensors (Basel) ; 19(14)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31295890

ABSTRACT

Turbidity describes the cloudiness, or clarity, of a liquid. It is a principal indicator of water quality, sensitive to any suspended solids present. Prior work has identified the lack of low-cost turbidity monitoring as a significant hurdle to overcome to improve water quality in many domains, especially in the developing world. Low-cost hand-held benchtop meters have been proposed. This work adapts and verifies the technology for continuous monitoring. Lab tests show the low-cost continuous monitor can achieve 1 nephelometric turbidity unit (NTU) accuracy in the range 0-100 NTU and costs approximately 64 USD in components to construct. This level of accuracy yields useful and actionable data about water quality and may be sufficient in certain applications where cost is a primary constraint. A 38-day continuous monitoring trial, including a step change in turbidity, showed promising results with a median error of 0.45 and 1.40 NTU for two different monitors. However, some noise was present in the readings resulting in a standard deviation of 1.90 and 6.55 NTU, respectively. The cause was primarily attributed to ambient light and bubbles in the piping. By controlling these noise sources, we believe the low-cost continuous turbidity monitor could be a useful tool in multiple domains.

3.
Radiology ; 228(1): 265-70, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12832587

ABSTRACT

A software system and database for computer-aided diagnosis with thin-section computed tomographic (CT) images of the chest was designed and implemented. When presented with an unknown query image, the system uses pattern recognition to retrieve visually similar images with known diagnoses from the database. A preliminary validation trial was conducted with 11 volunteers who were asked to select the best diagnosis for a series of test images, with and without software assistance. The percentage of correct answers increased from 29% to 62% with computer assistance. This finding suggests that this system may be useful for computer-assisted diagnosis.


Subject(s)
Databases, Factual , Diagnosis, Computer-Assisted , Information Storage and Retrieval , Radiology Information Systems , Tomography, X-Ray Computed , Software , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...