Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Basic Res Cardiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992300

ABSTRACT

Propionic acidemia (PA), arising from PCCA or PCCB variants, manifests as life-threatening cardiomyopathy and arrhythmias, with unclear pathophysiology. In this work, propionyl-CoA metabolism in rodent hearts and human pluripotent stem cell-derived cardiomyocytes was investigated with stable isotope tracing analysis. Surprisingly, gut microbiome-derived propionate rather than the propiogenic amino acids (valine, isoleucine, threonine, and methionine) or odd-chain fatty acids was found to be the primary cardiac propionyl-CoA source. In a Pcca-/-(A138T) mouse model and PA patients, accumulated propionyl-CoA and diminished acyl-CoA synthetase short-chain family member 3 impede hepatic propionate disposal, elevating circulating propionate. Prolonged propionate exposure induced significant oxidative stress in PCCA knockdown HL-1 cells and the hearts of Pcca-/-(A138T) mice. Additionally, Pcca-/-(A138T) mice exhibited mild diastolic dysfunction after the propionate challenge. These findings suggest that elevated circulating propionate may cause oxidative damage and functional impairment in the hearts of patients with PA.

2.
Commun Biol ; 7(1): 659, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811689

ABSTRACT

Propionic acidemia (PA), resulting from Pcca or Pccb gene mutations, impairs propionyl-CoA metabolism and induces metabolic alterations. While speculation exists that fasting might exacerbate metabolic crises in PA patients by accelerating the breakdown of odd-chain fatty acids and amino acids into propionyl-CoA, direct evidence is lacking. Our investigation into the metabolic effects of fasting in Pcca-/-(A138T) mice, a PA model, reveals surprising outcomes. Propionylcarnitine, a PA biomarker, decreases during fasting, along with the C3/C2 (propionylcarnitine/acetylcarnitine) ratio, ammonia, and methylcitrate. Although moderate amino acid catabolism to propionyl-CoA occurs with a 23-h fasting, a significant reduction in microbiome-produced propionate and increased fatty acid oxidation mitigate metabolic alterations by decreasing propionyl-CoA synthesis and enhancing acetyl-CoA synthesis. Fasting-induced gluconeogenesis further facilitates propionyl-CoA catabolism without changing propionyl-CoA carboxylase activity. These findings suggest that fasting may alleviate metabolic alterations in Pcca-/-(A138T) mice, prompting the need for clinical evaluation of its potential impact on PA patients.


Subject(s)
Fasting , Methylmalonyl-CoA Decarboxylase , Mutation , Animals , Mice , Methylmalonyl-CoA Decarboxylase/metabolism , Methylmalonyl-CoA Decarboxylase/genetics , Propionic Acidemia/genetics , Propionic Acidemia/metabolism , Male , Mice, Knockout , Disease Models, Animal , Mice, Inbred C57BL , Acyl Coenzyme A/metabolism
3.
Pharmacol Ther ; 249: 108501, 2023 09.
Article in English | MEDLINE | ID: mdl-37482098

ABSTRACT

Propionic acidemia (PA) is a genetic metabolic disorder caused by mutations in the mitochondrial enzyme, propionyl-CoA carboxylase (PCC), which is responsible for converting propionyl-CoA to methylmalonyl-CoA for further metabolism in the tricarboxylic acid cycle. When this process is disrupted, propionyl-CoA and its metabolites accumulate, leading to a variety of complications including life-threatening cardiac diseases and other metabolic strokes. While the clinical symptoms and diagnosis of PA are well established, the underlying pathophysiological mechanisms of PA-induced diseases are not fully understood. As a result, there are currently few effective therapies for PA beyond dietary restriction. This review focuses on the pathophysiological mechanisms of the various complications associated with PA, drawing on extensive research and clinical reports. Most research suggests that propionyl-CoA and its metabolites can impair mitochondrial energy metabolism and cause cellular damage by inducing oxidative stress. However, direct evidence from in vivo studies is still lacking. Additionally, elevated levels of ammonia can be toxic, although not all PA patients develop hyperammonemia. The discovery of pathophysiological mechanisms underlying various complications associated with PA can aid in the development of more effective therapeutic treatments. The consequences of elevated odd-chain fatty acids in lipid metabolism and potential gene expression changes mediated by histone propionylation also warrant further investigation.


Subject(s)
Propionic Acidemia , Humans , Propionic Acidemia/complications , Propionic Acidemia/genetics , Propionic Acidemia/metabolism , Methylmalonyl-CoA Decarboxylase/genetics , Methylmalonyl-CoA Decarboxylase/metabolism , Mutation , Energy Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...