Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37297105

ABSTRACT

This article presents the results of a study of the physical and mechanical properties of fine-grained fly ash concrete based on a combined reinforcement with steel and basalt fibers. The main studies were conducted using mathematical planning of experiments, which allowed the experiments to be algorithmized in terms of both the amount of experimental work and statistical requirements. Quantitative dependences characterizing the effect of the content of cement, fly ash binder, steel, and basalt fiber on the compressive strength and tensile splitting strength of fiber-reinforced concrete were obtained. It has been shown that the use of fiber can increase the efficiency factor of dispersed reinforcement (the tensile splitting strength to compressive strength ratio). To increase the resistance of basalt fiber, it is proposed to use fly ash in cement systems, which reduces the amount of free lime in the hydrating cement environment.

2.
Polymers (Basel) ; 14(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36559834

ABSTRACT

The article shows the effectiveness of the use of polymer additives for the production of fine-grained concrete mixtures and concretes based on using coal fly ash, which can be used as working mixtures for a 3D printer. Using mathematical planning of experiments, a set of experimental-statistical models was obtained that describes the influence of mixture composition factors including copolymer additive on the most important properties of ash-containing concrete mixtures and concretes for 3D concrete printing in the presence of a hardening accelerator additive. It is shown that when the dry mixture is mixed in water, the redispersed polymer powders are converted into an adhesive polymer dispersion, which, when the solution cures, creates "rubber bridges" in its pores and at the border with the base. They have high tensile strength and elastically reinforce the cement stone; in addition, they are also capable of not only significantly increasing the adhesion between the layers of the extruded mixture, but also significantly smoothing out such shortcomings of the cement stone as increased brittleness, low ultimate elongation, and a tendency to cracking.

3.
Materials (Basel) ; 15(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744173

ABSTRACT

There are no standards for testing the properties of 3D-printed materials; hence, the need to develop guidelines for implementing this type of experiment is necessary. The work concerns the development of a research methodology for interlayer bond strength evaluation in 3D-printed mineral materials. In additive manufactured construction elements, the bond strength is a significant factor as it determines the load-bearing capacity of the entire structural element. After we completed a literature review, the following three test methods were selected for consideration: direct tensile, splitting, and shear tests. The paper compares the testing procedure, results, and sample failure modes. The splitting test was found to be the most effective for assessing layer adhesion, by giving the lowest scatter of results while being an easy test to carry out.

SELECTION OF CITATIONS
SEARCH DETAIL
...