Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2018: 8604718, 2018.
Article in English | MEDLINE | ID: mdl-30584466

ABSTRACT

Aging is a physiological decline process. The number of older adults is growing around the world; therefore, the incidence of cognitive impairment, dementia, and other diseases related to aging increases. The main cellular factors that converge in the aging process are mitochondrial dysfunction, antioxidant impairment, inflammation, and immune response decline, among others. In this context, these cellular changes have an influence on the kynurenine pathway (KP), the main route of tryptophan (Trp) catabolism. KP metabolites have been involved in the aging process and neurodegenerative diseases. Although there are changes in the metabolite levels with age, at this time, there is no study that has evaluated cognitive decline as a consequence of Trp catabolism fluctuation in aging. The aim of this study was to evaluate the relation between the changes in Trp catabolism and cognitive impairment associated with age through KP metabolites level alterations in women over 50 years of age. Seventy-seven nondemented women over 50 years old were examined with a standardized cognitive screening evaluation in Spanish language (Neuropsi), Beck anxiety inventory (BAI), and the geriatric depression scale (GDS). Also, serum levels of Trp, kynurenine (Kyn), kynurenic acid (KYNA), and 3-hydroykynurenine (3-HK) and the glutathione ratio (GSH/GSSG) were measured. Results showed a negative correlation between age and Trp levels and a positive correlation between age and KYNA/Trp and 3-HK/Trp ratios. The level of cognitive impairment showed a significant positive association with age and with kynurenine pathway activation and a significant negative correlation with Trp levels. The GSH/GSSG ratio correlated positively with Trp levels and negatively with Kyn/Trp and 3-HK/Trp ratios. The depression score correlated negatively with Trp and positively with the 3-HK/Trp ratio. We concluded that KP activation increases with age and it is strongly associated with the level of cognition performance in nondemented women over 50 years of age.


Subject(s)
Cognition/physiology , Tryptophan/blood , Aged , Aged, 80 and over , Female , Humans , Kynurenic Acid/blood , Kynurenine/blood , Middle Aged , Quinolinic Acid/blood
2.
Sci Rep ; 7(1): 7810, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798383

ABSTRACT

Giardiasis is a worldwide parasitic disease that affects mainly children and immunosuppressed people. Side effects and the emergence of resistance over current used drugs make imperative looking for new antiparasitics through discovering of new biological targets and designing of novel drugs. Recently, it has determined that gastric proton-pump inhibitors (PPI) have anti-giardiasic activity. The glycolytic enzyme, triosephosphate isomerase (GlTIM), is one of its potential targets. Therefore, we employed the scaffold of PPI to design new compounds aimed to increase their antigiardial capacity by inactivating GlTIM. Here we demonstrated that two novel PPI-derivatives (BHO2 and BHO3), have better anti-giardiasic activity than omeprazole in concentrations around 120-130 µM, without cytotoxic effect on mammal cell cultures. The derivatives inactivated GlTIM through the chemical modification of Cys222 promoting local structural changes in the enzyme. Furthermore, derivatives forms adducts linked to Cys residues through a C-S bond. We demonstrated that PPI can be used as scaffolds to design better antiparasitic molecules; we also are proposing a molecular mechanism of reaction for these novel derivatives.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Giardia/metabolism , Proton Pump Inhibitors/chemistry , Triose-Phosphate Isomerase/metabolism , Antiprotozoal Agents/chemistry , Binding Sites , Giardia/drug effects , Giardiasis/drug therapy , Humans , Molecular Structure , Omeprazole/pharmacology , Parasitic Sensitivity Tests , Protozoan Proteins/metabolism , Triose-Phosphate Isomerase/chemistry
3.
Water Sci Technol ; 71(2): 277-82, 2015.
Article in English | MEDLINE | ID: mdl-25633952

ABSTRACT

The metabolic and kinetic behavior of a nitrifying sludge exposed to 2-chlorophenol (2-CP) was evaluated in batch cultures. Two kinds of nitrifying culture were used; one acclimated to 4-methylphenol (4-mp), and the other unacclimated to 4-mp. The unacclimated culture was affected adversely by the 2-CP's presence, since neither nitrification nor 2-CP oxidation was observed. Nonetheless, the acclimated culture showed metabolic capacity to nitrify and mineralize 2-CP. Ammonium removal was 100%, with a nitrifying yield of 0.92 ± 0.04 mg NO(3)(-)-N/mg NH(4)(+)-N consumed. The consumption efficiency for 2-CP was 100% and the halogenated compound was mineralized to CO2. Denaturing gradient gel electrophoresis (DGGE) patterns showed the shift in microbial community structure, indicating that microbial diversity was due to the acclimation process. This is the first evidence where nitrifying culture acclimated to 4-mp completely removed ammonium and 2-CP.


Subject(s)
Bacteria/metabolism , Chlorophenols/metabolism , Ammonium Compounds/metabolism , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Biodegradation, Environmental , Kinetics , Nitrification , Oxidation-Reduction , Sewage/chemistry , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...