Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 10(3): 312-317, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891132

ABSTRACT

A triazine hit identified from a screen of the BMS compound collection was optimized for potency, in vivo activity, and off-target profile to produce the bicyclic pyrimidine γ-secretase modulator BMS-932481. The compound showed robust reductions of Aß1-42 and Aß1-40 in the plasma, brain, and cerebrospinal fluid of mice and rats. Consistent with the γ-secretase modulator mechanism, increases in Aß1-37 and Aß1-38 were observed, with no change in the total amount of Aß1-x produced. No Notch-based toxicity was observed, and the overall preclinical profile of BMS-932481 supported its further evaluation in human clinical trials.

2.
ACS Med Chem Lett ; 9(5): 472-477, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29795762

ABSTRACT

There is a significant unmet medical need for more efficacious and rapidly acting antidepressants. Toward this end, negative allosteric modulators of the N-methyl-d-aspartate receptor subtype GluN2B have demonstrated encouraging therapeutic potential. We report herein the discovery and preclinical profile of a water-soluble intravenous prodrug BMS-986163 (6) and its active parent molecule BMS-986169 (5), which demonstrated high binding affinity for the GluN2B allosteric site (Ki = 4.0 nM) and selective inhibition of GluN2B receptor function (IC50 = 24 nM) in cells. The conversion of prodrug 6 to parent 5 was rapid in vitro and in vivo across preclinical species. After intravenous administration, compounds 5 and 6 have exhibited robust levels of ex vivo GluN2B target engagement in rodents and antidepressant-like activity in mice. No significant off-target activity was observed for 5, 6, or the major circulating metabolites met-1 and met-2. The prodrug BMS-986163 (6) has demonstrated an acceptable safety and toxicology profile and was selected as a preclinical candidate for further evaluation in major depressive disorder.

3.
J Pharmacol Exp Ther ; 363(3): 377-393, 2017 12.
Article in English | MEDLINE | ID: mdl-28954811

ABSTRACT

(R)-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-1-yl)-1-(4-methylbenzyl)pyrrolidin-2-one (BMS-986169) and the phosphate prodrug 4-((3S,4S)-3-fluoro-1-((R)-1-(4-methylbenzyl)-2-oxopyrrolidin-3-yl)piperidin-4-yl)phenyl dihydrogen phosphate (BMS-986163) were identified from a drug discovery effort focused on the development of novel, intravenous glutamate N-methyl-d-aspartate 2B receptor (GluN2B) negative allosteric modulators (NAMs) for treatment-resistant depression (TRD). BMS-986169 showed high binding affinity for the GluN2B subunit allosteric modulatory site (Ki = 4.03-6.3 nM) and selectively inhibited GluN2B receptor function in Xenopus oocytes expressing human N-methyl-d-aspartate receptor subtypes (IC50 = 24.1 nM). BMS-986169 weakly inhibited human ether-a-go-go-related gene channel activity (IC50 = 28.4 µM) and had negligible activity in an assay panel containing 40 additional pharmacological targets. Intravenous administration of BMS-986169 or BMS-986163 dose-dependently increased GluN2B receptor occupancy and inhibited in vivo [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) binding, confirming target engagement and effective cleavage of the prodrug. BMS-986169 reduced immobility in the mouse forced swim test, an effect similar to intravenous ketamine treatment. Decreased novelty suppressed feeding latency, and increased ex vivo hippocampal long-term potentiation was also seen 24 hours after acute BMS-986163 or BMS-986169 administration. BMS-986169 did not produce ketamine-like hyperlocomotion or abnormal behaviors in mice or cynomolgus monkeys but did produce a transient working memory impairment in monkeys that was closely related to plasma exposure. Finally, BMS-986163 produced robust changes in the quantitative electroencephalogram power band distribution, a translational measure that can be used to assess pharmacodynamic activity in healthy humans. Due to the poor aqueous solubility of BMS-986169, BMS-986163 was selected as the lead GluN2B NAM candidate for further evaluation as a novel intravenous agent for TRD.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Organophosphates/therapeutic use , Piperidines/therapeutic use , Prodrugs/therapeutic use , Pyrrolidinones/therapeutic use , Receptors, N-Methyl-D-Aspartate/metabolism , Administration, Intravenous , Allosteric Regulation , Animals , Antidepressive Agents/adverse effects , Antidepressive Agents/pharmacokinetics , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Brain Waves/drug effects , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Dissociative Disorders/chemically induced , Macaca fascicularis , Male , Memory, Short-Term/drug effects , Mice , Motor Activity/drug effects , Organophosphates/adverse effects , Organophosphates/pharmacokinetics , Piperidines/adverse effects , Piperidines/pharmacokinetics , Prodrugs/adverse effects , Prodrugs/pharmacokinetics , Pyrrolidinones/adverse effects , Pyrrolidinones/pharmacokinetics , Radioligand Assay , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Xenopus
4.
Bioorg Med Chem ; 25(2): 496-513, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27914948

ABSTRACT

Triazolopyridine ethers with mGlu2 positive allosteric modulator (PAM) activity are disclosed. The synthesis, in vitro activity, and metabolic stability data for a series of analogs is provided. The effort resulted in the discovery of a potent, selective, and brain penetrant lead molecule BMT-133218 ((+)-7m). After oral administration at 10mg/kg, BMT-133218 demonstrated full reversal of PCP-stimulated locomotor activity and prevented MK-801-induced working memory deficits in separate mouse models. Also, reversal of impairments in executive function were observed in rat set-shifting studies at 3 and 10mg/kg (p.o.). Extensive plasma protein binding as the result of high lipophilicity likely limited activity at lower doses. Optimized triazolopyridine ethers offer utility as mGlu2 PAMs for the treatment of schizophrenia and merit further preclinical investigation.


Subject(s)
Ethers/pharmacology , Pyridines/pharmacology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Schizophrenia/drug therapy , Triazoles/pharmacology , Administration, Oral , Allosteric Regulation/drug effects , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Ethers/administration & dosage , Ethers/chemistry , Haplorhini , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Pyridines/administration & dosage , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/metabolism , Schizophrenia/metabolism , Structure-Activity Relationship , Triazoles/administration & dosage , Triazoles/chemistry
5.
Int J Alzheimers Dis ; 2014: 431858, 2014.
Article in English | MEDLINE | ID: mdl-25097793

ABSTRACT

Alzheimer's disease is the most prevalent cause of dementia and is associated with accumulation of amyloid-ß peptide (Aß), particularly the 42-amino acid Aß1-42, in the brain. Aß1-42 levels can be decreased by γ-secretase modulators (GSM), which are small molecules that modulate γ-secretase, an enzyme essential for Aß production. BMS-869780 is a potent GSM that decreased Aß1-42 and Aß1-40 and increased Aß1-37 and Aß1-38, without inhibiting overall levels of Aß peptides or other APP processing intermediates. BMS-869780 also did not inhibit Notch processing by γ-secretase and lowered brain Aß1-42 without evidence of Notch-related side effects in rats. Human pharmacokinetic (PK) parameters were predicted through allometric scaling of PK in rat, dog, and monkey and were combined with the rat pharmacodynamic (PD) parameters to predict the relationship between BMS-869780 dose, exposure and Aß1-42 levels in human. Off-target and safety margins were then based on comparisons to the predicted exposure required for robust Aß1-42 lowering. Because of insufficient safety predictions and the relatively high predicted human daily dose of 700 mg, further evaluation of BMS-869780 as a potential clinical candidate was discontinued. Nevertheless, BMS-869780 demonstrates the potential of the GSM approach for robust lowering of brain Aß1-42 without Notch-related side effects.

6.
Bioorg Med Chem Lett ; 21(1): 537-41, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21078556

ABSTRACT

Heterocyclic replacement of the isophthalamide phenyl ring in hydroxyethylamine (HEA) BACE-1 inhibitors was explored. A variety of indole-1,3-dicarboxamide HEAs exhibited potent BACE-1 enzyme inhibition, but displayed poor cellular activity. Improvements in cellular activity and aspartic protease selectivity were observed for 7-azaindole-1,3-dicarboxamide HEAs. A methylprolinol-bearing derivative (10n) demonstrated robust reductions in rat plasma Aß levels, but did not lower rat brain Aß due to poor central exposure. The same analog exhibited a high efflux ratio in a bidirectional Caco-2 assay and was likely a substrate of the efflux transporter P-glycoprotein. X-ray crystal structures are reported for two indole HEAs in complex with BACE-1.


Subject(s)
Amines/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Indoles/chemical synthesis , Protease Inhibitors/chemistry , Pyridines/chemical synthesis , Amines/chemical synthesis , Amines/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/blood , Animals , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Crystallography, X-Ray , Indoles/chemistry , Indoles/pharmacology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , Pyridines/chemistry , Pyridines/pharmacology , Rats , Structure-Activity Relationship
7.
ACS Med Chem Lett ; 1(3): 120-4, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-24900185

ABSTRACT

During the course of our research efforts to develop a potent and selective γ-secretase inhibitor for the treatment of Alzheimer's disease, we investigated a series of carboxamide-substituted sulfonamides. Optimization based on potency, Notch/amyloid-ß precursor protein selectivity, and brain efficacy after oral dosing led to the discovery of 4 (BMS-708163). Compound 4 is a potent inhibitor of γ-secretase (Aß40 IC50 = 0.30 nM), demonstrating a 193-fold selectivity against Notch. Oral administration of 4 significantly reduced Aß40 levels for sustained periods in brain, plasma, and cerebrospinal fluid in rats and dogs.

8.
Bioorg Med Chem Lett ; 20(3): 1027-30, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20034793

ABSTRACT

Substituted 1-tosyl-3-vinylindoles undergo [3+2] dipolar cycloaddition with cyclic nitrones to afford substituted isoxazoles in good yield and high diastereoselectivity. The cycloadducts were readily converted in 4 steps into ring constrained homotryptamine analogs. These analogs exhibited excellent binding affinity for the human serotonin transporter (hSERT). Indoles bearing a 5-cyano group and a pendent ethyl(tetrahydroisoquinoline) moiety at the 3-position displayed the best potency for hSERT and high selectivity versus hDAT and hNET.


Subject(s)
Indoles/chemical synthesis , Indoles/metabolism , Serotonin Plasma Membrane Transport Proteins/chemical synthesis , Serotonin Plasma Membrane Transport Proteins/metabolism , Tryptamines/chemical synthesis , Tryptamines/metabolism , Cell Line , Crystallography, X-Ray , Humans , Protein Binding/physiology
9.
Bioorg Med Chem Lett ; 17(20): 5647-51, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17766113

ABSTRACT

A series of hybrid molecules containing the cyclopropylmethylamino side chain found in homotryptamine (1S,2S)-2c and an isosteric heteroaryl or naphthyl core were prepared and their binding affinities for the human serotonin transporter determined. The most potent isosteres were CN-substituted naphthalenes. These results demonstrate that isosteric aromatic cores which lack an H-bond donor site may be substituted for the indole nucleus without substantial loss in hSERT binding.


Subject(s)
Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacology , Tryptamines/chemistry , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Plasma Membrane Transport Proteins/metabolism , Heterocyclic Compounds/chemical synthesis , Humans , Inhibitory Concentration 50 , Molecular Conformation , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Structure-Activity Relationship
10.
J Med Chem ; 48(19): 6023-34, 2005 Sep 22.
Article in English | MEDLINE | ID: mdl-16162005

ABSTRACT

A series of indole cyclopropylmethylamines were found to be potent serotonin reuptake inhibitors. Nitrile substituents at the 5 and 7 positions of the indole ring gave high affinity for hSERT, and the preferred cyclopropane stereochemistry was determined to be (1S,2S)-trans. The cis-cyclopropanes had 20- to 30-fold less affinity than the trans, and the preferred cis stereochemistry was (1R,2S)-cis. Substitution of the indole N-1 position with methyl or ethyl groups gave a 10- to 30-fold decrease in affinity for hSERT, suggesting either a hydrogen-bonding interaction or limited steric tolerance in the region of the indole nitrogen. Compound (+)-12a demonstrated potent hSERT binding (Ki = 0.18 nM) in vitro and was more than 1000-fold less potent at hDAT, hNET, 5-HT1A, and 5-HT6. In vivo, (+)-12a produced robust, dose-dependent increases in extracellular serotonin in rat frontal cortex typical of a selective serotonin reuptake inhibitor. The maximal response produced by (+)-12a was similar to that of fluoxetine but at an approximately 10-fold lower dose.


Subject(s)
Cyclopropanes/chemical synthesis , Indoles/chemical synthesis , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Tryptamines/chemical synthesis , Animals , Crystallography, X-Ray , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Humans , Indoles/chemistry , Indoles/pharmacology , Microdialysis , Models, Molecular , Molecular Conformation , Radioligand Assay , Rats , Receptors, Serotonin/drug effects , Receptors, Serotonin/metabolism , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacology , Stereoisomerism , Structure-Activity Relationship , Tryptamines/chemistry , Tryptamines/pharmacology
11.
Org Lett ; 7(13): 2651-4, 2005 Jun 23.
Article in English | MEDLINE | ID: mdl-15957913

ABSTRACT

[reaction: see text] Substituted 1-tosyl-3-vinylindoles undergo catalytic asymmetric cyclopropanation with ethyl- and tert-butyldiazoacetate to afford N-protected trans-2-(indol-3-yl)-1-cyclopropanecarboxylic esters in good yield and high enantiomeric excess (81-88% ee). The resulting cycloadducts are demonstrated to be useful intermediates for the synthesis of conformationally restricted, homotryptamine-like analogues such as BMS-505130.


Subject(s)
Azo Compounds/chemistry , Cyclopropanes/chemical synthesis , Indoles/chemistry , Indoles/chemical synthesis , Tosyl Compounds/chemistry , Tryptamines/chemical synthesis , Vinyl Compounds/chemistry , Acetates/chemistry , Catalysis , Cyclization , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...