Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793286

ABSTRACT

This study delineates a methodology for the preparation of new composites based on a photocurable urethane-acrylate resin, which has been modified with (3-thiopropyl)polysilsesquioxane (SSQ-SH). The organosilicon compound combines fully enclosed cage structures and incompletely condensed silanols (a mixture of random structures) obtained through the hydrolytic condensation of (3-mercaptopropyl)trimethoxysilane. This process involves a thiol-ene "click" reaction between SSQ-SH and a commercially available resin (Ebecryl 1271®) in the presence of the photoinitiator DMPA, resulting in composites with significantly changed thermal properties. Various tests were conducted, including thermogravimetric analysis (TGA), Fourier transmittance infrared spectroscopy (FT-IR), differential scanning calorimetry (Photo-DSC), and photoreological measurement mechanical property, and water contact angle (WCA) tests. The modification of resin with SSQ-SH increased the temperature of 1% and 5% mass loss compared to the reference (for 50 wt% SSQ-SH, T5% was 310.8 °C, an increase of 20.4 °C). A composition containing 50 wt% of SSQ-SH crosslinked faster than the reference resin, a phenomenon confirmed by photorheological tests. This research highlights the potential of new composite materials in coating applications across diverse industries. The modification of resin with SSQ-SH not only enhances thermal properties but also introduces a host of functional improvements, thereby elevating the performance of the resulting coatings.

2.
Materials (Basel) ; 17(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38591380

ABSTRACT

In this study, organosilicon compounds were used as modifiers of filaments constituting building materials for 3D printing technology. Polymethylhydrosiloxane underwent a hydrosilylation reaction with styrene, octadecene, and vinyltrimethoxysilane to produce new di- or tri-functional derivatives with varying ratios of olefins. These compounds were then mixed with silica and incorporated into the ABS matrix using standard processing methods. The resulting systems exhibited changes in their physicochemical and mechanical characteristics. Several of the obtained composites (e.g., modified with VT:6STYR) had an increase in the contact angle of over 20° resulting in a hydrophobic surface. The addition of modifiers also prevented a decrease in rheological parameters regardless of the amount of filler added. In addition, comprehensive tests of the thermal decomposition of the obtained composites were performed and an attempt was made to precisely characterize the decomposition of ABS using FT-IR and optical microscopy, which allowed us to determine the impact of individual groups on the thermal stability of the system.

3.
Int J Mol Sci ; 24(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37762263

ABSTRACT

In this paper, a new type of borasilsesquioxanes was synthesized through a condensation process, and its reactivity in catalytic hydrosilylation reactions with silanes, siloxanes, and silsesquioxanes was investigated. The obtained compounds were mostly obtained in >90% yield. They were fully characterized using spectroscopic (1H, 13C, 29Si NMR) and spectrometric (MALDI-TOF-MS) methods. The next stage of the research involved studying the thermogravimetric properties of the borasilsesquioxanes. By analyzing the different stages of decomposition using spectroscopic techniques (NMR, ATR-FTIR, Raman) and microscopic imaging, it was found that the structure of the borasilsesquioxanes changed during the pyrolysis process and polymer compounds were formed.


Subject(s)
Polymers , Siloxanes , Siloxanes/chemistry , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Silanes/chemistry
4.
Materials (Basel) ; 16(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36676612

ABSTRACT

Anti-icing coatings have provided a very good alternative to current, uneconomic, active deicing methods, and their use would bring a number of significant benefits to many industries, such as aviation and energy. Some of the most promising icephobic surfaces are those with hydrophobic properties. However, the relationship between hydrophobicity and low ice adhesion is not yet clearly defined. In this work, chemical modification of an epoxy gelcoat with chemical modifiers from the group of double organofunctionalized polysiloxanes (generally called multifunctionalized organosilicon compounds (MFSCs)) was applied. The anti-icing properties of manufactured coatings were determined by means of measurements of shear strength between the ice layer and the modified surface, conducted using a tensile machine. In the work, tests were also performed on the roughness, wettability, and durability of the properties in an aging chamber. It was found that the performed modifications of the coating's chemical composition by the addition of polysiloxanes enabled us to reduce ice adhesion by 51% and to increase the water contact angle by 14% in comparison to the neat gelcoat. A reduction in ice adhesion was also observed with the increasing water contact angle and with decreasing surface roughness. In addition, only one modification recorded an increase in ice adhesion after exposure in the aging chamber.

5.
Chempluschem ; 88(1): e202200295, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36592005

ABSTRACT

The presented work is a continuation of research on the reactivity of unsaturated borasilsesquioxanes under the conditions of common organometallic transformations. The catalytic hydrosilylation reaction with silanes, siloxanes and silsesquioxanes in presence of platinum catalyst was explored. The majority of the products were obtained in high yields (>90 %) and their structures were confirmed and characterized by spectroscopy and spectrometry, i. e. NMR and MALDI-TOF-MS. The most significant segment of the work is research on the spontaneous redistribution reaction of the alkoxy group from silane to borane moiety occurring in the obtained products, not being limited to the heterosilsesquioxane chemistry, however. The products were confirmed using GC-MS, ESI-MS methods and B3LYP exchange-correlation, in order to ascertain formation of the silicon-boron hybrid molecule.

6.
Chempluschem ; 87(6): e202200099, 2022 06.
Article in English | MEDLINE | ID: mdl-35670458

ABSTRACT

This article presents the synthesis of new derivatives of octa(3-thiopropyl)silsesquioxane (SSQ-8SH) via thiol-ene reaction with simple olefins bearing alkyl groups as well as methoxysilyl, substituted aryl or fluoroalkyl groups. All products were characterized by 1 H NMR, 13 C NMR, 29 Si NMR, FTIR, GPC, MALDI-TOF-MS, as well as thermal analysis (TGA) to confirm their structures, purity and thermal stability, and finally give some insight into their thermal degradation pathway. In some of the structures obtained, the T5% values take place at high temperatures and are close to 230 °C. The thiol-ene reaction allowed to obtain 7 new compounds with high yield (>92 %), no by-products and in a relatively short time (24 h). All products are characterized by high conversion >99 %. New derivatives can find potential use as modifiers of plastics to improve their certain properties for example hydrophobicity or thermo-oxidative stability.


Subject(s)
Sulfhydryl Compounds , Sulfur , Hydrophobic and Hydrophilic Interactions , Sulfhydryl Compounds/chemistry
7.
Molecules ; 27(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35209229

ABSTRACT

Compounds of the silsesquioxane type are attractive material precursors. High molecular weights and well-defined structures predestine them to create ceramics with a controlled composition at the molecular level. New molecular precursors of ceramic materials with the ratio of Si:Ge = 7:1 atoms were obtained. The influence of organic substituents on the thermal decomposition processes of germasilsesquioxanes was investigated. Some of the structures obtained are characterized by a high non-volatile residue after the thermal decomposition process. The introduction of the germanium atom to the structure of the silsesquioxane molecular cage reduces the thermal stability of the obtained structures.

8.
Materials (Basel) ; 15(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35057213

ABSTRACT

In this work, silsesquioxane and spherosilicate compounds were assessed as novel organosilicon coupling agents for surface modification of TiO2 in a green process, and compared with their conventional silane counterparts. The surface-treated TiO2 particles were then applied in preparation of epoxy (EP) composites and the aspects of pigment dispersion, suspension stability, hiding power, as well as the composite mechanical and thermal properties were discussed. The studied compounds loading was between 0.005-0.015% (50-150 ppm) in respect to the bulk composite mass and resulted in increase of suspension stability and hiding power by over an order of magnitude. It was found that these compounds may be an effective alternative for silane coupling agents, yet due to their low cost and simplicity of production and manipulation, silanes and siloxanes are still the most straight-forward options available. Nonetheless, the obtained findings might encourage tuning of silsesquioxane compounds structure and probably process itself if implementation of these novel organosilicon compounds as surface treatment agents is sought for special applications, e.g., high performance coating systems.

9.
Chem Rev ; 122(3): 3996-4090, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34967210

ABSTRACT

While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.


Subject(s)
Coordination Complexes , Metalloids , Transition Elements , Catalysis , Hydrogen/chemistry , Transition Elements/chemistry
10.
Molecules ; 26(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34299387

ABSTRACT

The functionalization of mono- and octahydrospherosilicate with vinylboranes and allylboranes via hydrosilylation reaction in the presence of a Karstedt's platinum (0) catalyst is presented. This is the catalytic route to obtain a new class of silsesquioxanes containing boron atoms in their structure in high yields (>90%) and with satisfactory selectivity. The obtained compounds were fully characterized by spectroscopic (1H, 13C, 29Si NMR) and spectrometric methods (MALDI-TOF-MS), as well as thermal analysis (TGA). The obtained compounds were subjected to thermal tests, characterizing the processes of melting, thermal evaporation, sublimation and thermal decomposition.

11.
Polymers (Basel) ; 13(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203425

ABSTRACT

In this work, a series of silsesquioxanes (SSQ) and spherosilicates (SS), comprising a group of cage siloxane (CS) compounds, was tested as functional additives for preparation of isotactic polypropylene (iPP)-based nanocomposites and discussed in the aspect of their rationale of applicability as such additives. For this purpose, the compounds were prepared by condensation and olefin hydrosilylation reactions. The effect of these cage siloxane products on properties of obtained CS/iPP nanocomposites was analyzed by means of mechanical, microscopic (scanning electron microscopy-energy dispersive spectroscopy), thermal (differential scanning calorimetry, thermogravimetry), thermomechanical (Vicat softening point) analyses. The results were compared with the previous findings on CS/polyolefin composites. The role of CS compounds was discussed in terms of plastic processing additives.

12.
Molecules ; 25(24)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322732

ABSTRACT

The first report of using limonene derivative of a spherosilicate as a modifier of polylactide used for 3D printing and injection moulding is presented. The paper presents the use of limonene-functionalized spherosilicate derivative as a functional additive. The study compared the material characteristics of polylactide modified with SS-Limonene (0.25-5.0% w/w) processed with traditional injection moulding and 3D printing (FFF, FDM). A significant improvement in the processing properties concerning rheology, inter-layer adhesion, and mechanical properties was achieved, which translated into the quality of the print and reduction of waste production. Moreover, the paper describes the elementary stages of thermal transformations of the obtained hybrid systems.


Subject(s)
Limonene/chemistry , Printing, Three-Dimensional/instrumentation , Silicates/chemistry , Biomechanical Phenomena , Hot Temperature , Polyesters/chemistry , Rheology
13.
Materials (Basel) ; 13(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256208

ABSTRACT

Two phosphorus-containing cage-like silsesquioxane derivatives were synthesized as reactive or additive flame retardants for epoxy resin. The silsesquioxanes were obtained via an epoxide ring-opening reaction using a 10-hydroxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPA). In one derivative containing in its structure 4 glycidoxypropyl and 4 phosphate groups, denoted as 4P4GS, only half of the epoxy rings was reacted with phosphate to obtain a reactive additive, while in the second derivative containing 8 phosphate groups, denoted as 8PS, all epoxy groups were converted, thus an additive modifier was obtained. The silsesquioxanes containing phosphorus atoms and the reactive phosphorus-free silsesquioxane derivative (octakis[(3-glycidoxypropyl)dimethylsiloxy]octasilsesquioxane (8GS)) were used to prepare hybrid materials based on epoxy resin. To compare the impact of the structure of silsesquioxane derivatives on the properties of hybrid materials, a number of samples containing 1, 5, and 10% of the modifiers making a series of epoxy materials containing additive or reactive modifiers, were obtained. The modified epoxies were studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), nanoindentation, water contact angle, and cone calorimetry tests to assess the effects of the modifier structure on the physicochemical properties of the investigated materials.

14.
Polymers (Basel) ; 12(10)2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33023079

ABSTRACT

In this work, polyethylene (PE) composites were prepared with a series of completely condensed silsesquioxanes (SSQ), as well as with open-cage hepta(isobutyl)trisilanol silsesquioxane. The effect of the additives on the thermal, mechanical, rheological, and crystalline properties of the composites obtained was determined. The dispersion of trisilanol derivative within polymer matrix was slightly better than that of the other isobutyl compounds, suggesting condensation of the additive to less polar products of different structure, which was confirmed by thermogravimetry (TG) and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. The additives improved the thermal stability of polyethylene and formed composites of higher rigidity than the neat polyolefin. The results were compared to the literature data, with aminopropylhepta(isobutyl)silsesquioxane and vinylhepta(isobutyl)silsesquioxane being used partially as references, as PE composites thereof were reported earlier, but lacked some analytical results and required further investigation. It was proven that the practical upper loading limit for such silsesquioxane compounds as processing and functional additives for polyethylene should be fixed at around 1%.

15.
Materials (Basel) ; 13(18)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911628

ABSTRACT

Bifunctional silsesquioxanes create an attractive group of compounds with a wide range of potential applications, and recently they have gained much interest. They are known to be obtained mainly via hydrosilylation, but we disclose novel synthetic protocols based on different but complementary reactions, i.e., cross-metathesis (CM) and silylative coupling (SC). A series of cubic T8 type silsesquioxane derivatives with a broad scope of styryl substituents were synthesized in a one-pot procedure and characterized by spectroscopic and spectrometric methods. All of the new compounds can be obtained in a one-pot manner, which has an attractive impact on the synthetic procedure, as it is economic in terms of the isolation of intermediate products. Additionally, the methodology disclosed here enables the (E)-stereoselective introduction of styrenes derivative to the cubic T8 type core. The presented compounds can be interesting precursors for a further functionalization that may significantly increase the possibility of their application in the design and synthesis of new functional materials.

16.
Chem Asian J ; 15(16): 2437-2441, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32538545

ABSTRACT

In this paper we present the synthesis of mixed bifunctional compounds of T8 H8 silsesquioxane and spherosilicate (HSiMe2 O)8 Si8 O12 derivatives via platinum-catalyzed hydrosilylation of alkenylgermanes and olefins. To the best of our knowledge, this is the first literature example of bifunctional compounds with organogermyl functionalities. Eleven mixed systems with a variety of substituents (Si-H, alkyl, germyl, epoxy, and hydroxy) were prepared and fully characterized by NMR spectroscopy. Additionally, our research includes a real-time FT-IR study of the synthesis of these bifunctional compounds of the general formula (R)8-m (GeR'3 (CH2 )n+2 R)m Si8 O12 . and (R''(CH2 )2 R)8-m (GeR'3 (CH2 )2 R)m Si8 O12 where m∼4.

17.
Inorg Chem ; 59(11): 7830-7840, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32436707

ABSTRACT

Herein, we report an efficient synthesis and functionalization of trifunctional open-cage-type silsesquioxanes. The method proposed has been successfully applied for the synthesis of a library of incompletely condensed silsesquioxanes with vinyldiorganosilyl functional groups, which allows further modification. Detailed studies of hydrosilylation of sterically different open-cage vinylsilsesquioxanes with a wide spectrum of phenylsilanes catalyzed by platinum and rhodium compounds are also reported. The influence of the reaction parameters, types of reagents, and catalysts employed on the efficiency of the process was examined. Optimization of the process based on the above results permitted the design of a very attractive method for the synthesis of multifunctionalized silsesquioxanes with excellent yields and regioselectivity. Moreover, the results allowed the choice of the most efficient catalyst whose application led to the selective formation of substituted open-cage silsesquioxanes. These new compounds have been fully characterized and studied in terms of their thermal properties.

18.
Chem Asian J ; 15(10): 1598-1604, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32301555

ABSTRACT

Herein we report a study of highly efficient platinum-catalyzed hydrosilylation of dialkenylgermanes with silsesquioxanes and spherosilicates. The use of divinyl- and diallylgermanes allowed the synthesis of new classes of compounds, i. e., dumbbell-type systems, silsesquioxanes with alkenyl pendant group, and oligomeric derivatives. The results are supported by detailed data from in situ FT-IR and NMR measurements, enabling precise monitoring of the reaction progress and determination of regioselectivity of the formed products.

19.
Dalton Trans ; 49(16): 5055-5063, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32242191

ABSTRACT

In this work, we present the first example of highly efficient platinum-catalyzed hydrosilylation of vinyl- and allylgermanes with different types of silsesquioxanes and spherosilicates. This protocol allows the straightforward introduction of organogermyl functionalities with alkyl chains linked to the silsesquioxane core with good yields and excellent selectivity. These derivatives may be applied as precursors for the development of advanced hybrid materials in the future. In addition, a comparison made between vinylsilanes and vinylgermanes showed a higher reactivity of germanium compounds in the hydrosilylation reaction. To the best of our knowledge, this is the first literature example of the functionalization of silsesquioxanes and spherosilicates with these types of germanium derivatives. The reaction parameters and kinetics were determined by in situ FT-IR. In addition, our research is supported by extensive data obtained from NMR measurements.

20.
Polymers (Basel) ; 11(3)2019 Mar 16.
Article in English | MEDLINE | ID: mdl-30960488

ABSTRACT

Over the past two decades, organic optoelectronic materials have been considered very promising. The attractiveness of this group of compounds, regardless of their undisputable application potential, lies in the possibility of their use in the construction of organic⁻inorganic hybrid materials. This class of frameworks also considers nanostructural polyhedral oligomeric silsesquioxanes (POSSs) with "organic coronae" and precisely defined organic architectures between dispersed rigid silica cores. A significant number of papers on the design and development of POSS-based organic optoelectronic as well as photoluminescent (PL) materials have been published recently. In view of the scientific literature abounding with numerous examples of their application (i.e., as OLEDs), the aim of this review is to present efficient synthetic pathways leading to the formation of nanocomposite materials based on silsesquioxane systems that contain organic chromophores of complex nature. A summary of stoichiometric and predominantly catalytic methods for these silsesquioxane-based systems to be applied in the construction of photoactive materials or their precursors is given.

SELECTION OF CITATIONS
SEARCH DETAIL
...