Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 209: 115418, 2023 03.
Article in English | MEDLINE | ID: mdl-36693437

ABSTRACT

Myeloperoxidase (MPO) is a heme-containing peroxidase from phagocytic cells, which plays an important role in the innate immune response. The primary anti-microbial function of MPO is achieved by catalyzing the oxidation of halides by hydrogen peroxide (H2O2). Upon activation of phagocytes, MPO activity is detectable in both phagosomes and extracellularly, where it can remain or transcytose into interstitial compartments. Activated MPO leads to oxidative stress and tissue damage in many inflammatory states, including cardiovascular disease. Starting from a low molecular weight (LMW) high throughput screening (HTS) hit, here we report the discovery of a novel pyrrolidinone indole (IN-4) as a highly potent MPO inhibitor. This compound displays similar in vitro potency across peroxidation, plasma and NETosis assays. In a dilution/dialysis study, <5% of the original MPO activity was detected post-incubation of MPO with IN-4, suggesting irreversible enzyme inhibition. A fast MPO inactivation rate (kinact/Ki) and low partition ratio (k3/k4) make IN-4 kinetic properties attractive for an MPO inhibitor. This compound also displays significant selectivity over the closely related thyroid peroxidase (TPO), and is selective for extracellular MPO over intracellular (neutrophil) MPO. Moreover, IN-4 shows good exposure, low clearance and high oral bioavailability in mice, rats and dogs. The high in vitro MPO activity and high oral exposure observed with IN-4 result in a dose-dependent inhibition of MPO activity in three mouse models of inflammation. In conclusion, IN-4 is a novel, potent, mechanism-based and selective MPO inhibitor, which may be used as superior therapeutic agent to treat multiple inflammatory conditions, including cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Peroxidase , Rats , Mice , Animals , Dogs , Hydrogen Peroxide , Antioxidants , Indoles , Pyrrolidinones
2.
J Med Chem ; 65(5): 4291-4317, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35179904

ABSTRACT

Glucokinase (GK) is a key regulator of glucose homeostasis, and its small-molecule activators represent a promising opportunity for the treatment of type 2 diabetes. Several GK activators have been advanced into clinical trials and have demonstrated promising efficacy; however, hypoglycemia represents a key risk for this mechanism. In an effort to mitigate this hypoglycemia risk while maintaining the efficacy of the GK mechanism, we have investigated a series of amino heteroaryl phosphonate benzamides as ''partial" GK activators. The structure-activity relationship studies starting from a "full GK activator" 11, which culminated in the discovery of the "partial GK activator" 31 (BMS-820132), are discussed. The synthesis and in vitro and in vivo preclinical pharmacology profiles of 31 and its pharmacokinetics (PK) are described. Based on its promising in vivo efficacy and preclinical ADME and safety profiles, 31 was advanced into human clinical trials.


Subject(s)
Azetidines , Diabetes Mellitus, Type 2 , Hypoglycemia , Organophosphonates , Azetidines/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucokinase , Humans , Hypoglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Organophosphonates/pharmacology , Organophosphonates/therapeutic use
3.
Bioorg Med Chem ; 28(12): 115548, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32503688

ABSTRACT

Myeloperoxidase (MPO) activity and subsequent generation of hypochlorous acid has been associated with the killing of host-invading microorganisms (e.g. bacteria, viruses, and fungi). However, during oxidative stress, high MPO activity can damage host tissue and is linked to several chronic inflammatory conditions. Herein, we describe the development of a novel biaryl, indole-pyrazole series of irreversible mechanism-based inhibitors of MPO. Derived from an indole-containing high-throughput screen hit, optimization efforts resulted in potent and selective 6-substituted indoles with good oral bioavailability and in vivo activity.


Subject(s)
Enzyme Inhibitors/metabolism , Indoles/metabolism , Peroxidase/metabolism , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Half-Life , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/therapeutic use , Mice , Peritonitis/drug therapy , Peritonitis/pathology , Peroxidase/antagonists & inhibitors , Pyrazoles/chemistry , Pyrazoles/metabolism , Pyrazoles/pharmacokinetics , Structure-Activity Relationship
4.
J Pharmacol Exp Ther ; 367(1): 147-154, 2018 10.
Article in English | MEDLINE | ID: mdl-30076263

ABSTRACT

Myeloperoxidase (MPO) is a leukocyte-derived redox enzyme that has been linked to oxidative stress and damage in many inflammatory states, including cardiovascular disease. We have discovered aminopyridines that are potent mechanism-based inhibitors of MPO, with significant selectivity over the closely related thyroid peroxidase. 1-((6-Aminopyridin-3-yl)methyl)-3-(4-bromophenyl)urea (Aminopyridine 2) inhibited MPO in human plasma and blocked MPO-dependent vasomotor dysfunction ex vivo in rat aortic rings. Aminopyridine 2 also showed high oral bioavailability and inhibited MPO activity in vivo in a mouse model of peritonitis. Aminopyridine 2 could effectively be administered as a food admixture, making it an important tool for assessing the relative importance of MPO in preclinical models of chronic inflammatory disease.


Subject(s)
Aminopyridines/pharmacology , Enzyme Inhibitors/pharmacology , Peroxidase/antagonists & inhibitors , Animals , Aorta/drug effects , Aorta/metabolism , Biological Availability , Humans , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley
5.
J Biol Chem ; 289(48): 33456-68, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25301950

ABSTRACT

HCV infection is an urgent global health problem that has triggered a drive to discover therapies that specifically target the virus. BMS-791325 is a novel direct antiviral agent specifically targeting HCV NS5B, an RNA-dependent RNA polymerase. Robust viral clearance of HCV was observed in infected patients treated with BMS-791325 in combination with other anti-HCV agents in Phase 2 clinical studies. Biochemical and biophysical studies revealed that BMS-791325 is a time-dependent, non-competitive inhibitor of the polymerase. Binding studies with NS5B genetic variants (WT, L30S, and P495L) exposed a two-step, slow binding mechanism, but details of the binding mechanism differed for each of the polymerase variants. For the clinically relevant resistance variant (P495L), the rate of initial complex formation and dissociation is similar to WT, but the kinetics of the second step is significantly faster, showing that this variant impacts the final tight complex. The resulting shortened residence time translates into the observed decrease in inhibitor potency. The L30S variant has a significantly different profile. The rate of initial complex formation and dissociation is 7-10 times faster for the L30S variant compared with WT; however, the forward and reverse rates to form the final complex are not significantly different. The impact of the L30S variant on the inhibition profile and binding kinetics of BMS-791325 provides experimental evidence for the dynamic interaction of fingers and thumb domains in an environment that supports the formation of active replication complexes and the initiation of RNA synthesis.


Subject(s)
Antiviral Agents/chemistry , Benzazepines/chemistry , Hepacivirus/enzymology , Indoles/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Substitution , Antiviral Agents/pharmacology , Benzazepines/therapeutic use , Hepatitis C/drug therapy , Hepatitis C/enzymology , Humans , Indoles/therapeutic use , Mutation, Missense , Protein Binding , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
6.
Bioorg Med Chem Lett ; 23(6): 1622-5, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23416006

ABSTRACT

Synthesis and structure-activity relationship of a series of substituted piperidinyl glycine 2-cyano-4,5-methano pyrroline DPP-IV inhibitors are described. Improvement of the inhibitory activity and chemical stability of this series of compounds was respectively achieved by the introduction of bulky groups at the 4-position and 1-position of the piperidinyl glycine, leading to a series of potent and stable DPP-IV inhibitors.


Subject(s)
Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Piperidines/chemistry , Pyrrolidines/chemistry , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors/metabolism , Humans , Hydrogen-Ion Concentration , Protein Binding , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Structure-Activity Relationship , Temperature
7.
BMC Pharmacol ; 12: 2, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22475049

ABSTRACT

BACKGROUND: Dipeptidylpeptidase 4 (DPP4) inhibitors have clinical benefit in patients with type 2 diabetes mellitus by increasing levels of glucose-lowering incretin hormones, such as glucagon-like peptide -1 (GLP-1), a peptide with a short half life that is secreted for approximately 1 hour following a meal. Since drugs with prolonged binding to their target have been shown to maximize pharmacodynamic effects while minimizing drug levels, we developed a time-dependent inhibitor that has a half-life for dissociation from DPP4 close to the duration of the first phase of GLP-1 release. RESULTS: Saxagliptin and its active metabolite (5-hydroxysaxagliptin) are potent inhibitors of human DPP4 with prolonged dissociation from its active site (Ki = 1.3 nM and 2.6 nM, t1/2 = 50 and 23 minutes respectively at 37°C). In comparison, both vildagliptin (3.5 minutes) and sitagliptin ( < 2 minutes) rapidly dissociated from DPP4 at 37°C. Saxagliptin and 5-hydroxysaxagliptin are selective for inhibition of DPP4 versus other DPP family members and a large panel of other proteases, and have similar potency and efficacy across multiple species.Inhibition of plasma DPP activity is used as a biomarker in animal models and clinical trials. However, most DPP4 inhibitors are competitive with substrate and rapidly dissociate from DPP4; therefore, the type of substrate, volume of addition and final concentration of substrate in these assays can change measured inhibition. We show that unlike a rapidly dissociating DPP4 inhibitor, inhibition of plasma DPP activity by saxagliptin and 5-hydroxysaxagliptin in an ex vivo assay was not dependent on substrate concentration when substrate was added rapidly because saxagliptin and 5-hydroxysaxagliptin dissociate slowly from DPP4, once bound. We also show that substrate concentration was important for rapidly dissociating DPP4 inhibitors. CONCLUSIONS: Saxagliptin and its active metabolite are potent, selective inhibitors of DPP4, with prolonged dissociation from its active site. They also demonstrate prolonged inhibition of plasma DPP4 ex vivo in animal models, which implies that saxagliptin and 5-hydroxysaxagliptin would continue to inhibit DPP4 during rapid increases in substrates in vivo.


Subject(s)
Adamantane/analogs & derivatives , Dipeptides/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/metabolism , Hypoglycemic Agents/metabolism , Adamantane/metabolism , Algorithms , Animals , Artifacts , Cloning, Molecular , Dipeptidases/metabolism , Dipeptidyl Peptidase 4/blood , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Glucagon-Like Peptide 1/metabolism , Humans , Indicators and Reagents , Kinetics , Macaca fascicularis , Nitriles/metabolism , Protein Binding , Pyrazines/metabolism , Pyrrolidines/metabolism , Sitagliptin Phosphate , Species Specificity , Triazoles/metabolism , Vildagliptin
8.
Bioorg Med Chem Lett ; 21(22): 6909-15, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21974952
9.
Bioorg Med Chem Lett ; 21(22): 6916-24, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21782431

ABSTRACT

The synthesis, evaluation, and structure-activity relationships of a class of γ-lactam 1,3-diaminopropan-2-ol transition-state isostere inhibitors of BACE are discussed. Two strategies for optimizing lead compound 1a are presented. Reducing the overall size of the inhibitors resulted in the identification of γ-lactam 1i, whereas the introduction of conformational constraint on the prime-side of the inhibitor generated compounds such as the 3-hydroxypyrrolidine inhibitor 28n. The full in vivo profile of 1i in rats and 28n in Tg 2576 mice is presented.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lactams/chemistry , Lactams/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Animals , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Lactams/chemical synthesis , Lactams/pharmacokinetics , Mice , Models, Molecular , Rats , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 21(1): 537-41, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21078556

ABSTRACT

Heterocyclic replacement of the isophthalamide phenyl ring in hydroxyethylamine (HEA) BACE-1 inhibitors was explored. A variety of indole-1,3-dicarboxamide HEAs exhibited potent BACE-1 enzyme inhibition, but displayed poor cellular activity. Improvements in cellular activity and aspartic protease selectivity were observed for 7-azaindole-1,3-dicarboxamide HEAs. A methylprolinol-bearing derivative (10n) demonstrated robust reductions in rat plasma Aß levels, but did not lower rat brain Aß due to poor central exposure. The same analog exhibited a high efflux ratio in a bidirectional Caco-2 assay and was likely a substrate of the efflux transporter P-glycoprotein. X-ray crystal structures are reported for two indole HEAs in complex with BACE-1.


Subject(s)
Amines/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Indoles/chemical synthesis , Protease Inhibitors/chemistry , Pyridines/chemical synthesis , Amines/chemical synthesis , Amines/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/blood , Animals , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Crystallography, X-Ray , Indoles/chemistry , Indoles/pharmacology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , Pyridines/chemistry , Pyridines/pharmacology , Rats , Structure-Activity Relationship
11.
J Med Chem ; 53(15): 5620-8, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20684603

ABSTRACT

Continued structure-activity relationship (SAR) exploration within our previously disclosed azolopyrimidine containing dipeptidyl peptidase-4 (DPP4) inhibitors led us to focus on an imidazolopyrimidine series in particular. Further study revealed that by replacing the aryl substitution on the imidazole ring with a more polar carboxylic ester or amide, these compounds displayed not only increased DPP4 binding activity but also significantly reduced human ether-a-go-go related gene (hERG) and sodium channel inhibitory activities. Additional incremental adjustment of polarity led to permeable molecules which exhibited favorable pharmacokinetic (PK) profiles in preclinical animal species. The active site binding mode of these compounds was determined by X-ray crystallography as exemplified by amide 24c. A subsequent lead molecule from this series, (+)-6-(aminomethyl)-5-(2,4-dichlorophenyl)-N-(1-ethyl-1H-pyrazol-5-yl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxamide (24s), emerged as a potent, selective DPP4 inhibitor that displayed excellent PK profiles and in vivo efficacy in ob/ob mice.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Hypoglycemic Agents/chemical synthesis , Imidazoles/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Catalytic Domain , Crystallography, X-Ray , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/chemistry , Dogs , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Male , Mice , Mice, Obese , Models, Molecular , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Sodium Channel Blockers/pharmacology , Stereoisomerism , Structure-Activity Relationship
12.
Eur J Pharmacol ; 593(1-3): 10-5, 2008 Sep 28.
Article in English | MEDLINE | ID: mdl-18655784

ABSTRACT

In this report we describe a novel radioligand, [(3)H](S)-2-((S)-3-Acetylamino-3-sec-butyl-2-oxo-pyrrolidin-1-yl)-N-[(1S,2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide ([(3)H]BMS-599240), that exhibits robust specific binding in homogenates from cell cultures overexpressing beta-site amyloid precursor protein cleaving enzyme-1 (BACE1). Radioligand binding exhibited high affinity, K(d)=2 nM, commensurate with its inhibitory potency against BACE1. Inhibition of radioligand binding in the presence of a range of different BACE1 inhibitors exhibited the same rank order of potency as for inhibition of BACE1 enzymatic activity. BACE1-dependent binding of the radioligand was also demonstrated in mouse brain homogenates, where genetic ablation of BACE1 eliminated high affinity binding. Thus, the radioligand [(3)H]BMS-599240 is a novel tool potentially useful for evaluation of BACE1 enzyme in biological samples, and for evaluation of inhibitor binding to BACE1.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Pyrrolidinones , Amyloid Precursor Protein Secretases/biosynthesis , Amyloid Precursor Protein Secretases/genetics , Animals , Aspartic Acid Endopeptidases/biosynthesis , Aspartic Acid Endopeptidases/genetics , Brain/cytology , Cells, Cultured , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Humans , Kinetics , Ligands , Mice , Proto-Oncogene Proteins c-myc/metabolism , Radioligand Assay
13.
Arch Biochem Biophys ; 475(1): 72-9, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18455495

ABSTRACT

The role of citrate as a physiological modulator of mammalian acetyl-CoA carboxylases (ACCs) has been well studied; however, the mechanism has not been clearly defined. In the current study, we found that citrate activated recombinant human ACC2 by more than approximately 1000-fold, but activated recombinant human ACC1 only by approximately 4-fold. The data fit best to a model which accounts for cooperative binding of two citrate molecules. Citrate activates ACCs at lower concentrations and inhibits at higher concentrations with apparent K(d) values of 0.8+/-0.3 and 3.4+/-0.6 mM, and apparent K(i) values of 20+/-8 and 38 +/-8 mM for ACC1 and ACC2, respectively. In the absence of added citrate, both ACC1 and ACC2 were inactivated by avidin rapidly and completely. Addition of 10 mM citrate protected ACC2 from avidin inactivation; however, protection by citrate was less pronounced for ACC1. In response to citrate treatment, different aggregation patterns for the two isoforms were also observed by dynamic light scattering. Although formation of aggregates by both isoforms was sensitive to citrate, with Mg2+ and Mg-citrate addition only formation of the ACC2 aggregates showed a dependence on citrate concentration. Mass spectrometry data indicated phosphorylation of Ser79 of ACC1 (a serine known to regulate activity), and the corresponding Ser221 of ACC2. Taken together, these data suggest that recombinant human ACC1 and ACC2 are differentially activated by citrate, most likely through conformational changes leading to aggregation, with ACC2 being more sensitive to this activator.


Subject(s)
Acetyl-CoA Carboxylase/metabolism , Citric Acid/pharmacology , Acetyl-CoA Carboxylase/genetics , Animals , Baculoviridae/genetics , Dose-Response Relationship, Drug , Drosophila/cytology , Drosophila/metabolism , Enzyme Activation/drug effects , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Light , Phosphorylation , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Scattering, Radiation , Structure-Activity Relationship
14.
J Pharmacol Exp Ther ; 326(2): 502-13, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18499745

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease. Amyloid beta (Abeta) peptides are hypothesized to cause the initiation and progression of AD based on pathologic data from AD patients, genetic analysis of mutations that cause early onset forms of AD, and preclinical studies. Based on this hypothesis, beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) inhibitors are an attractive therapeutic approach for AD because cleavage of the APP by BACE1 is required to form Abeta. In this study, three potent BACE1 inhibitors are characterized. All three inhibitors decrease Abeta formation in cultured cells with IC(50) values less than 10 nM. Analysis of APP C-terminal fragments by immunoblotting and Abeta peptides by mass spectrometry showed that these inhibitors decreased Abeta by inhibiting BACE1. An assay for Abeta1-40 in mice was developed and used to show that these BACE1 inhibitors decreased plasma Abeta1-40, but not brain Abeta1-40, in wild-type mice. Because these BACE1 inhibitors were substrates for P-glycoprotein (P-gp), a member of the ATP-binding cassette superfamily of efflux transporters, these inhibitors were administered to P-gp knockout (KO) mice. These studies showed that all three BACE1 inhibitors decreased brain Abeta1-40 in P-gp KO mice, demonstrating that P-gp is a major limitation for development of BACE1 inhibitors to test the amyloid hypothesis. A comparison of plasma Abeta1-40 and brain Abeta1-40 dose responses for these three compounds revealed differences in relative ED(50) values, indicating that factors other than P-gp can also contribute to poor brain activity by BACE1 inhibitors.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain , Enzyme Inhibitors/pharmacology , Peptide Fragments/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Amyloid Precursor Protein Secretases/physiology , Amyloid beta-Peptides/blood , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/physiology , Blotting, Western , Brain/drug effects , Brain/enzymology , Brain/metabolism , Cell Line , Cell Membrane Permeability , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Mice, Knockout , Molecular Structure , Peptide Fragments/blood , Protein Binding , Substrate Specificity
15.
Protein Sci ; 17(2): 240-50, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18227430

ABSTRACT

The inhibition of DPP-IV by saxagliptin has been proposed to occur through formation of a covalent but reversible complex. To evaluate further the mechanism of inhibition, we determined the X-ray crystal structure of the DPP-IV:saxagliptin complex. This structure reveals covalent attachment between S630 and the inhibitor nitrile carbon (C-O distance <1.3 A). To investigate whether this serine addition is assisted by the catalytic His-Asp dyad, we generated two mutants of DPP-IV, S630A and H740Q, and assayed them for ability to bind inhibitor. DPP-IV H740Q bound saxagliptin with an approximately 1000-fold reduction in affinity relative to DPP-IV WT, while DPP-IV S630A showed no evidence for binding inhibitor. An analog of saxagliptin lacking the nitrile group showed unchanged binding properties to the both mutant proteins, highlighting the essential role S630 and H740 play in covalent bond formation between S630 and saxagliptin. Further supporting mechanism-based inhibition by saxagliptin, NMR spectra of enzyme-saxagliptin complexes revealed the presence of three downfield resonances with low fractionation factors characteristic of short and strong hydrogen bonds (SSHB). Comparison of the NMR spectra of various wild-type and mutant DPP-IV:ligand complexes enabled assignment of a resonance at approximately 14 ppm to H740. Two additional DPP-IV mutants, Y547F and Y547Q, generated to probe potential stabilization of the enzyme-inhibitor complex by this residue, did not show any differences in inhibitor binding either by ITC or NMR. Together with the previously published enzymatic data, the structural and binding data presented here strongly support a histidine-assisted covalent bond formation between S630 hydroxyl oxygen and the nitrile group of saxagliptin.


Subject(s)
Adamantane/analogs & derivatives , Dipeptides/chemistry , Dipeptidyl Peptidase 4/chemistry , Adamantane/chemistry , Adamantane/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Dipeptides/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Hydrogen Bonding , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Quaternary
16.
Bioorg Med Chem Lett ; 17(23): 6476-80, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17937986

ABSTRACT

The synthesis and structure-activity relationships of novel dipeptidyl peptidase IV inhibitors replacing the classical cyanopyrrolidine P1 group with other small nitrogen heterocycles are described. A unique potency enhancement was achieved with beta-branched natural and unnatural amino acids, particularly adamantylglycines, linked to a (2S,3R)-2,3-methanopyrrolidine based scaffold.


Subject(s)
Dipeptides/chemistry , Dipeptidyl-Peptidase IV Inhibitors , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptides/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Drug Evaluation, Preclinical , Humans , Nitriles/chemistry , Nitriles/pharmacology , Structure-Activity Relationship
17.
Biochemistry ; 46(5): 1423-31, 2007 Feb 06.
Article in English | MEDLINE | ID: mdl-17260972

ABSTRACT

Cooperativity with glucose is a key feature of human glucokinase (GK), allowing its crucial role as a glucose sensor in hepatic and pancreatic cells. We studied the changes in enzyme intrinsic tryptophan fluorescence induced by binding of different ligands to this monomeric enzyme using stopped-flow and equilibrium binding methods. Glucose binding data under pre-steady state conditions suggest that the free enzyme in solution is in a preexisting equilibrium between at least two conformers (super-open and open) which differ in their affinity for glucose (Kd* = 0.17 +/- 0.02 mM and Kd = 73 +/- 18 mM). Increasing the glucose concentration changes the ratio of the two conformers, thus yielding an apparent Kd of 3 mM (different from a Km of 7-10 mM). The rates of conformational transitions of free and GK complexed with sugar are slow and during catalysis are most likely affected by ATP binding, phosphate transfer, and product release steps to allow the kcat to be 60 s-1. The ATP analogue PNP-AMP binds to free GK (super-open) and GK-glucose (open) complexes with comparable affinities (Kd = 0.23 +/- 0.02 and 0.19 +/- 0.08 mM, respectively). However, cooperativity with PNP-AMP observed under equilibrium binding conditions in the presence of glucose (Hill slope of 1.6) is indicative of further complex tightening to the closed conformation. Another physiological modulator (inhibitor), palmitoyl-CoA, binds to GK with similar characteristics, suggesting that conformational changes induced upon ligand binding are not restricted by an active site ligand. In conclusion, our data support control of GK activity and Km through the ratio of distinct conformers (super-open, open, and closed) through either substrate or other ligand binding and/or dissociation.


Subject(s)
Glucokinase/metabolism , Adenylyl Imidodiphosphate/metabolism , Catalysis , Glucose/metabolism , Humans , Kinetics , Ligands , Palmitoyl Coenzyme A/metabolism , Protein Binding , Protein Conformation
18.
Arch Biochem Biophys ; 445(1): 9-18, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16364232

ABSTRACT

Dipeptidyl peptidase-IV (DPP-IV) is a serine protease with a signature Asp-His-Ser motif at the active site. Our pH data suggest that Gly-Pro-pNA cleavage catalyzed by DPP-IV is facilitated by an ionization of a residue with a pK of 7.2 +/- 0.1. By analogy to other serine proteases this pK is suggestive of His-Asp assisted Ser addition to the P1 carbonyl carbon of the substrate to form a tetrahedral intermediate. Solvent kinetic isotope effect studies yielded a D2Okcat/Km=2.9+/-0.2 and a D2Okcat=1.7+/-0.2 suggesting that kinetically significant proton transfers contribute to rate limitation during acyl intermediate formation (leaving group release) and hydrolysis. A "burst" of product release during pre steady-state Gly-Pro-pNA cleavage indicated rate limitation in the deacylation half-reaction. Nevertheless, the amplitude of the burst exceeded the enzyme concentration significantly (approximately 15-fold), which is consistent with a branching deacylation step. All of these data allowed us to better understand DPP-IV inhibition by saxagliptin (BMS-477118). We propose a two-step inhibition mechanism wherein an initial encounter complex is followed by covalent intermediate formation. Final inhibitory complex assembly (kon) depends upon the ionization of an enzyme residue with a pK of 6.2 +/- 0.1, and we assigned it to the catalytic His-Asp pair which enhances Ser nucleophilicity for covalent addition. An ionization with a pK of 7.9 +/- 0.2 likely reflects the P2 terminal amine of the inhibitor hydrogen bonding to Glu205/Glu206 in the enzyme active site. The formation of the covalent enzyme-inhibitor complex was reversible and dissociated with a koff of (5.5 +/- 0.4) x 10(-5) s(-1), thus yielding a Ki* (as koff/kon) of 0.35 nM, which is in good agreement with the value of 0.6 nM obtained from steady-state inhibition studies. Proton NMR spectra of DPP-IV showed a downfield resonance at 16.1 ppm. Two additional peaks in the 1H NMR spectra at 17.4 and 14.1 ppm were observed upon mixing the enzyme with saxagliptin. Fractionation factors (phi) of 0.6 and 0.5 for the 17.4 and 14.1 ppm peaks, respectively, are suggestive of short strong hydrogen bonds in the enzyme-inhibitor complex.


Subject(s)
Adamantane/analogs & derivatives , Dipeptides/chemistry , Dipeptidyl Peptidase 4/chemistry , Enzyme Inhibitors/chemistry , Adamantane/chemistry , Catalysis , Humans , Hydrogen-Ion Concentration , Kinetics , Nuclear Magnetic Resonance, Biomolecular , Solvents
19.
Bioorg Med Chem Lett ; 16(6): 1731-4, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16376077

ABSTRACT

A series of seco-prolinenitrile-containing dipeptides were synthesized and assayed as inhibitors of the N-terminal sequence-specific serine protease dipeptidyl peptidase IV, a promising new target for treatment of type 2 diabetes. The inhibitors described herein assess the minimum structural requirements at P1 for this enzyme, resulting in the identification of inhibitors with low nM potency.


Subject(s)
Adenosine Deaminase/chemistry , Dipeptides , Dipeptidyl Peptidase 4/chemistry , Enzyme Inhibitors , Glycoproteins/chemistry , Nitriles , Proline/chemistry , Aniline Compounds/metabolism , Dipeptides/chemical synthesis , Dipeptides/chemistry , Dipeptides/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Nitriles/chemical synthesis , Nitriles/chemistry , Nitriles/pharmacology
20.
Bioorg Med Chem Lett ; 15(18): 3992-5, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16046120

ABSTRACT

Dipeptidyl peptidase IV (DPP4) is a multifunctional type II transmembrane serine peptidase which regulates various physiological processes, most notably plasma glucose homeostasis by cleaving peptide hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. Inhibition of DPP4 is a potentially valuable therapy for type 2 diabetes. Synthesis and structure-activity relationships of a series of substituted diprolyl nitriles are described, leading to the identification of compound 1 with a measured DPP4 K(i) of 3.6 nM.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Nitriles/pharmacology , Protease Inhibitors/pharmacology , Binding Sites , Cyclization , Dipeptidyl Peptidase 4/chemistry , Models, Molecular , Molecular Structure , Nitriles/chemistry , Protease Inhibitors/chemistry , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...