Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Healthcare (Basel) ; 10(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36141347

ABSTRACT

A high prevalence of smoking and low rates of smoking cessation interventions can be observed in psychiatric wards. A questionnaire-based, cross-sectional study was performed in five hospitals among 107 psychiatric ward nurses. The aim was to investigate nurses' views on patients' smoking practices and their influence on the safety of both the patients and medical personnel. In addition, we asked about the availability of smoking cessation support. Most of the respondents noticed the negative impacts of smoking on patients and medical personnel. Nearly a third of our respondents (29.0%) recalled smoking-related accidents in their facilities. In 45.2% of these accidents, a patient set someone else on fire. Around one fifth of nurses had rather permissive attitudes towards tobacco use in hospital wards. Significant associations were identified between respondents' smoking status and their opinions on amending smoking policies and on unsupervised smoking. Regarding professional help available to smoking patients, 88.8% of participants reported that interventions to address smoking were available in their wards. Psychiatric hospitalisation can be an opportunity to offer tobacco treatment to patients with mental health conditions. To make use of this opportunity, smoke-free policies need to be put in place and hospital personnel, particularly nurses, should be trained and equipped with the knowledge and skills needed to assist in the smoking care of psychiatric ward patients.

2.
Sci Rep ; 12(1): 8720, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610348

ABSTRACT

Blackgrass (Alopecurus myosuroides Huds.), one of the most aggressive grass weeds in Europe, is also a strong competitor of crops. This study aimed to assess the impact of environmental conditions on the competition between (1) ACC-ase and ALS herbicide-resistant (BR) and herbicide-susceptible (BS) blackgrass biotypes, (2) BR and winter wheat cv. Arkadia (W), and (3) BS and W. In the replacement series model, the experiment was conducted at seven sites across Poland during two seasons (2018/19 and 2019/20). In the BR-BS experiment, the BS biotype was in majority more competitive toward the BR biotype. However, in the regime of optimal hydrothermal conditions and at a higher sand content in the soil we observed a higher competitiveness of BR towards BS. The combined interactions between W and BR or BS were also affected by environmental conditions, i.e., soil texture and hydrothermal coefficient, as explained by PCA and k-means cluster analysis. At most sites, W was more competitive toward both BS and BR, which could result from earlier emergence of W in relation to B in majority of sites. Except for two cases, located on heavy, clay soils, during humid seasons, where B was more competitive toward W. We summarize that blackgrass competitiveness towards other biotypes and wheat depends to some extent on environmental conditions; however, the phenomenon should be explored in more detail.


Subject(s)
Herbicides , Triticum , Herbicide Resistance , Herbicides/pharmacology , Poaceae , Poland , Soil
3.
J Agric Food Chem ; 70(8): 2545-2553, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35170944

ABSTRACT

In the framework of this study, dicationic herbicidal ionic liquids (HILs) containing tetramethylene-1,4-bis(decyldimethylammonium) and dodecylmethylene-1,12-bis(decyldimethylammonium), including two different herbicidal anions exhibiting different modes of action, were synthesized and characterized. One herbicide incorporated into the HILs was a tribenuron-methyl belonging to ALS inhibitors, while the second herbicidal anion was a synthetic auxin that acts as a growth regulator, namely 2,4-dichlorophenoxyacetate (2,4-D), 2-(2,4-dichlorophenoxy)propionate, (2,4-DP), 2,4,5-trichlorophenoxyacetate (2,4,5-T), 4-chloro-2-methylphenoxyacetiate (MCPA), 2-(4-chloro-2-methylphenoxy)propionate (MCPP), and 4-chlorophenoxyacetate (4-CPA). The obtained products were found to be unstable and decomposed, which can be attributed to the presence of an additional methyl group within the sulfonylurea bridge of the tribenuron-methyl. The synthesized HILs exhibited good affinity with polar and semipolar solvents, with ethyl acetate and hexane as the only solvents that did not dissolve the HILs. Greenhouse tests demonstrated that most of the obtained HILs were more effective than the reference herbicide containing tribenuron-methyl. The length of the alkyl chain in the cation also influenced the effectiveness of the HILs. Better effects were observed for dodecylmethylene-1,12-bis(decyldimethylammonium) cations compared to tetramethylene-1,4-bis(decyldimethylammonium). Therefore, the novel dicatonic HILs showed to integrate the advent of the combination of the different herbicides into a single molecule, enhance herbicidal efficacy, and reduce the risk of weed resistance due to the various modes of action of the applied treatment.


Subject(s)
Herbicides , Ionic Liquids , Anions , Cations , Herbicides/pharmacology
4.
ACS Omega ; 6(49): 33779-33791, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926926

ABSTRACT

The goal of this research was to obtain and characterize ionic liquids based on a bisammonium cation and both 4-chloro-2-methylphenoxyacetate (MCPA) and l-tryptophanate anions. The concept of including two structurally different anions was utilized to achieve improved biological activity, while crucial functional traits could be designed by modifying the cation. The synthesis process was efficient and resulted in high yields. Subsequent analyses (nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, and high-performance liquid chromatography (HPLC)) confirmed the chemical structure, purity, and molar ratio of ions in the obtained compounds. The described compounds are novel and have not been previously described in the literature. Evaluations of physicochemical properties indicated that the obtained double-salt ionic liquids (DSILs) exhibited high thermal stability, high solubility in water, and surface activity. A biological activity assessment using greenhouse tests revealed that the herbicidal efficiency of the studied DSILs was notably increased compared to the reference commercial herbicide (even by ∼50% in the case of oilseed rape), which could be attributed to their high wettability toward hydrophobic surfaces. The compounds also efficiently inhibited the growth of several microbial species, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) values at the level of several µg·mL-1. The length of the spacer and alkyl substituent in the cation notably influenced the physicochemical and biological properties of the DSILs, which allowed us to design the structures of the obtained compounds in accordance with needs. The presented results confirm the high application potential of the described DSILs and provide a new and promising path for obtaining new and efficient plant-protection agents.

5.
Chempluschem ; 85(10): 2281-2289, 2020 10.
Article in English | MEDLINE | ID: mdl-32959994

ABSTRACT

The synthesis and characteristics are presented of novel double-salt herbicidal ionic liquids (DSHILs) that contain 4-chloro-2-methylphenoxyacetate and trans-cinnamate anions. In the designed synthesis, an anion of natural origin and a herbicidal anion were combined with an amphiphilic bisammonium cation to obtain new DSHILs with high herbicidal activity while high biocompatibility is maintained. The NMR and HRMS spectral analysis confirmed that the target structures were formed. Furthermore, HPLC analyses indicated that, as assumed, both anions were present in equimolar amounts. Experiments regarding the herbicidal effectiveness confirmed that the synthesized DSHILs exhibited high biological activity. The solutions of DSHILs applied during greenhouse studies were characterized by a low contact angle (approx. 55-67°) and surface tension (approx. 32-35 mN m-1 ), which facilitated the contact of the active substance with the plant surface and penetration of the herbicide into the plant tissues.

6.
Chempluschem ; 84(3): 268-276, 2019 03.
Article in English | MEDLINE | ID: mdl-31950757

ABSTRACT

This study presents a new group of herbicidal ionic liquids (HILs) based on a cation occurs commonly in nature-acetylcholine. The HILs were obtained with a high yield through ion exchange between acetylcholine chloride and potassium or sodium salts of selected acids with herbicidal activity. The results of the herbicidal activity measurement against common oilseed rape (Brassica napus L.) exceeded those of the commercial products. Spray solutions of the synthesized HILs revealed high surface activity and wetting properties which further manifested as higher herbicidal activity. The reduction of surface tension and low contact angles together with the specific action of acetylcholine allowed for better penetration of synthesized HILs into plant tissues. In addition, OECD 301F tests confirmed high mineralization of the HILs. The simple transformation of commercial herbicides into acetylcholine HILs proved to be a very effective method of increasing their activity, and constitutes an interesting solution to the problem of weed infestation with the use of a substance commonly found in nature.


Subject(s)
Acetylcholine/analogs & derivatives , Acetylcholine/toxicity , Herbicides/toxicity , Ionic Liquids/toxicity , Acetylcholine/chemical synthesis , Brassica napus/drug effects , Herbicides/chemical synthesis , Herbicides/chemistry , Ionic Liquids/chemical synthesis , Ionic Liquids/chemistry , Solubility , Surface Tension , Viscosity , Wettability
7.
Chempluschem ; 83(6): 529-541, 2018 Jun.
Article in English | MEDLINE | ID: mdl-31950654

ABSTRACT

In this study, two homologous series of novel herbicidal ionic liquids (HILs) were synthesized in a simple metathesis reaction between alkyl[2-(2-hydroxyethoxy)ethyl]dimethylammonium bromides and alkali metal salts of 4-chloro-2-methylphenoxyacetic acid (MCPA) or 3,6-dichloro-2-methoxybenzoic acid (dicamba), known as popular herbicides from the class of growth regulators. These HILs were subsequently mixed to prepare double-salt herbicidal ionic liquids (DSHILs). The DSHILs were characterized by substantially altered parameters of viscosity, refractive index, glass transition temperatures and surface activity compared to the average values expected for ideal mixtures of their individual components (HILs). Interestingly, DSHILs possessed superior physicochemical properties such as relatively low viscosity or facilitated formation of micelles, which emphasizes the complex nature of multi-ion interactions in the microstructures of ionic liquid mixtures. The biological tests showed improved efficiency of DSHILs against tested weeds compared to the reference herbicides and parent HILs.

8.
RSC Adv ; 8(50): 28676-28683, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-35542470

ABSTRACT

Third generation bio-ionic liquids (bio-ILs) were synthesized based on cheap and increasingly available camelina oil. The ionic liquids were obtained with high yield based on the reaction between camelina oil, which contained the following carboxylic acids: C18:3ω-3 linolenic >30%, C20:1 eicosenoic 28%, C18:2ω-6 linoleic 13%, C18:1 oleic 13%, C16:0 palmitic 4.5%, C22:1 erucic 4.5% and C18:0 stearic 2.5%, and quaternary ammonium hydroxides comprising cations such as: choline, di(hydrogenated tallow)dimethylammonium, oleylmethylbis(2-hydroxyethyl)ammonium, benzalkonium, tetradecyltrimethylammonium, tetramethylammonium and didecyldimethylammonium. The synthesized bio-ILs were characterized as high viscosity liquids which are thermally stable and their solubility in water and organic solvents depended on the type of cation. Two extreme examples of bio-ILs include the water soluble one comprising choline as the cation and the one comprising the di(hydrogenated tallow)dimethylammonium cation, which is soluble in hexane. The presented results show the importance of ammonium bio-ILs as antifeedants with a wide spectrum of activity. The tested beetles (Insecta: Coleoptera) of storage pests: grain weevil (Sitophilus granarius (L.)), confused flour beetle (Tribolium confusum Duv.) and khapra beetle (Trogoderma granarium Ev.) presented notable differences in terms of susceptibility to the synthesized ILs. The synthesized bio-ILs are effective adjuvants for herbicides belonging to the sylfonylurea group. They exhibited high activity despite the fact they were applied at a dose almost half that used for commercial adjuvants, which opens the era of adjuvant ILs. Aside from its use in the production of biodiesel, renewable diesel and renewable jet fuel, camelina oil is starting to become a potential resource for the production of novel agrochemicals.

9.
J Agric Food Chem ; 65(2): 260-269, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27997185

ABSTRACT

In the framework of this study a synthesis methodology and characterization of long alkyl herbicidal ionic liquids (HILs) based on four commonly used herbicides (2,4-D, MCPA, MCPP, and dicamba) are presented. New HILs were obtained with high efficiency (>95%) using an acid-base reaction between herbicidal acids and hexadecyltrimethylammonium, octadecyltrimethylammonium, and behenyltrimethylammonium hydroxides in alcoholic medium. Among all synthesized salts, only three compounds comprising the MCPP anion were liquids at room temperature. Subsequently, the influence of both the alkyl chain length and the anion structure on their physicochemical properties (thermal decomposition profiles, solubility in 10 representative solvents, surface activity, density, viscosity, and refractive index) was determined. All HILs exhibited high thermal stability as well as surface activity; however, their solubility notably depended on both the length of the carbon chain and the structure of the anion. The herbicidal efficacy of the obtained salts was tested in greenhouse and field experiments. Greenhouse testing performed on common lambsquarters (Chenopodium album L.) and flixweed (Descurainia sophia L.) as test plants indicated that HILs were characterized by similar or higher efficacy compared to commercial herbicides. The results of field trials confirmed the high activity of HILs, particularly those containing phenoxyacids as anions (MCPA, 2,4-D, and MCPP).


Subject(s)
Herbicides/chemistry , Herbicides/pharmacology , Ionic Liquids/chemistry , 2,4-Dichlorophenoxyacetic Acid/chemistry , 2-Methyl-4-chlorophenoxyacetic Acid/chemistry , Bis-Trimethylammonium Compounds/chemistry , Brassicaceae/drug effects , Chemistry Techniques, Synthetic , Chenopodium album/drug effects , Dicamba/chemistry , Herbicides/chemical synthesis , Ionic Liquids/chemical synthesis , Ionic Liquids/pharmacology , Plant Weeds/drug effects , Poland , Solubility , Structure-Activity Relationship , Surface Properties , Viscosity
10.
Chemistry ; 22(34): 12012-21, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27374836

ABSTRACT

This study focused on the synthesis and subsequent characterization of herbicidal ionic liquids based on betaine and carnitine, two derivatives of amino acids, which were used as cations. Four commonly used herbicides (2,4-D, MCPA, MCPP and Dicamba) were used as anions in simple (single anion) and oligomeric (two anions) salts. The obtained salts were subjected to analyzes regarding physicochemical properties (density, viscosity, refractive index, thermal decomposition profiles and solubility) as well as evaluation of their herbicidal activity under greenhouse and field conditions, toxicity towards rats and biodegradability. The obtained results suggest that the synthesized herbicidal ionic liquids displayed low toxicity (classified as category 4 compounds) and showed similar or improved efficacy against weed compared to reference herbicides. The highest increase was observed during field trials for salts containing 2,4-D as the anion, which also exhibited the highest biodegradability (>75 %).


Subject(s)
Anions/chemistry , Betaine/chemistry , Carnitine/chemistry , Cations/chemistry , Herbicides/chemistry , Ionic Liquids/chemistry , Animals , Rats , Solubility , Viscosity
11.
J Agric Food Chem ; 63(13): 3357-66, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25734891

ABSTRACT

Ten sulfonylurea-based herbicidal ionic liquids (HILs) were prepared by combining the metsulfuron-methyl anion with various cation types including quaternary ammonium ([bis(2-hydroxyethyl)methyloleylammonium](+), [2-hydroxyethyltrimethylammonium](+)), pyridinium ([1-dodecylpyridinium](+)), piperidinium ([1-methyl-1-propylpiperidinium](+)), imidazolium ([1-allyl-3-methylimidazolium](+), [1-butyl-3-methylimidazolium](+)), pyrrolidinium ([1-butyl-1-methylpyrrolidinium](+)), morpholinium ([4-decyl-4-methylmorpholinium](+)), and phosphonium ([trihexyltetradecylphosphonium](+) and [tetrabutylphosphonium](+)). Their herbicidal efficacy was studied in both greenhouse tests and field trials. Preliminary results for the greenhouse tests showed at least twice the activity for all HILs when compared to the activity of commercial Galmet 20 SG, with HILs with phosphonium cations being the most effective. The results of two-year field studies showed significantly less enhancement of activity than observed in the greenhouse; nonetheless, it was found that the herbicidal efficacy was higher than that of the commercial analog, and efficacy varied depending on the plant species.


Subject(s)
Arylsulfonates/chemistry , Herbicides/chemical synthesis , Anions/chemistry , Calorimetry, Differential Scanning , Cations/chemistry , Drug Stability , Herbicides/pharmacology , Plant Weeds/drug effects , Solubility , Solutions , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...