Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Pathol ; 54(1): 53-60, 2017 01.
Article in English | MEDLINE | ID: mdl-27511313

ABSTRACT

Primary and secondary nervous system involvement occurs in 4% and 5%-12%, respectively, of all canine non-Hodgkin lymphomas. The recent new classification of canine malignant lymphomas, based on the human World Health Organization classification, has been endorsed with international acceptance. This histological and immunocytochemical classification provides a unique opportunity to study the histologic anatomic distribution patterns in the central and peripheral nervous system of these defined lymphoma subtypes. In this study, we studied a cohort of 37 dogs with lymphoma, which at necropsy had either primary (n = 1, 2.7%) or secondary (n = 36; 97.3%) neural involvement. These T- (n = 16; 43.2%) or B-cell (n = 21; 56.8%) lymphomas were further classified into 12 lymphoma subtypes, with predominant subtypes including peripheral T-cell lymphoma (PTCL) or diffuse large B-cell lymphoma (DLBCL), respectively. This systematic study identified 6 different anatomically based histologically defined patterns of lymphoma infiltration in the nervous system of dogs. Different and distinct combinations of anatomical patterns correlated with specific lymphoma subtypes. Lymphoma infiltration within the meningeal, perivascular, and periventricular compartments were characteristic of DLBCL, whereas peripheral nerve involvement was a frequent feature of PTCL. Similarly cell counts above 64 cells/µL in cerebrospinal samples correlated best with marked meningeal and periventricular lymphoma infiltration histologically. Prospective studies are needed in order to confirm the hypothesis that these combinations of histological neuroanatomic patterns reflect targeting of receptors specific for the lymphoma subtypes at these various sites.


Subject(s)
Dog Diseases/pathology , Lymphoma/veterinary , Nervous System Neoplasms/veterinary , Animals , Dogs , Female , Lymphoma/pathology , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/veterinary , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell/veterinary , Male , Nervous System Neoplasms/pathology , Retrospective Studies
2.
J Comp Pathol ; 150(4): 449-62, 2014 May.
Article in English | MEDLINE | ID: mdl-24456748

ABSTRACT

Neurotrophins are a family of growth factors that act on neuronal cells. The neurotrophins include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-3, -4 and -5. The action of neurotrophins depends on two transmembrane-receptor signalling systems: (1) the tropomyosin-related kinase (Trk) family of tyrosine kinase receptors (Trk A, Trk B and Trk C) and (2) the p75 neurotrophin receptor (p75(NTR)). The interaction between neurotrophic factors and their receptors may be involved in the mechanisms that regulate the differential susceptibility of neuronal populations in neurodegenerative diseases. The aim of the present study was to evaluate the role of neurotrophins in the pathogenesis of bovine spongiform encephalopathy (BSE) using a transgenic mouse overexpressing bovine prnp (BoTg 110). Histochemistry for Lycopersicum esculentum agglutinin, haematoxylin and eosin staining and immunohistochemistry for the abnormal isoform of the prion protein (PrP(d)), glial fibrillary acidic protein (GFAP), NGF, BDNF, NT-3 and the receptors Trk A, Trk B, Trk C and p75(NTR) was performed. The lesions and the immunolabelling patterns were assessed semiquantitatively in different areas of the brain. No significant differences in the immunolabelling of neurotrophins and their receptors were observed between BSE-inoculated and control animals, except for p75(NTR), which showed increased expression correlating with the distribution of lesions, PrP(d) deposition and gliosis in the BSE-inoculated mice.


Subject(s)
Brain/metabolism , Encephalopathy, Bovine Spongiform/metabolism , Nerve Growth Factors/metabolism , Receptors, Nerve Growth Factor/metabolism , Animals , Brain/pathology , Cattle , Encephalopathy, Bovine Spongiform/pathology , Mice , Mice, Transgenic
3.
Eur J Histochem ; 57(1): e9, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23549468

ABSTRACT

Finding a marker of neural stem cells remains a medical research priority. It was reported that the proteins doublecortin and nucleostemin were related with stem/progenitor cells in central nervous system. The aim of the present immunohistochemical study was to evaluate the expression of these proteins and their pattern of distribution in canine brain, including age-related changes, and in non-nervous tissues. We found that doublecortin had a more specific expression pattern, related with neurogenesis and neuronal migration, while nucleostemin was expressed in most cells of almost every tissue studied. The immunolabeling of both proteins decreased with age. We may conclude that nucleostemin is not a specific marker of stem/progenitor cells in the dog. Doublecortin, however, is not an exclusive marker of neural stem cells, but also of neuronal precursors.


Subject(s)
Aging/physiology , Brain/metabolism , Gene Expression Regulation/physiology , Microtubule-Associated Proteins/biosynthesis , Neural Stem Cells/metabolism , Neuropeptides/biosynthesis , Nuclear Proteins/biosynthesis , Animals , Brain/cytology , Dogs , Doublecortin Domain Proteins , Female , Male , Neural Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...