Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Lab Anim (NY) ; 52(12): 332-343, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38017181

ABSTRACT

Environmental enrichment (EE) consists of a series of interventions carried out in the home environment to promote greater exposure to sensory stimuli and mimic the natural habitat of laboratory-housed animals, providing environments closer to those found in nature. Some studies have shown the positive effects of EE in zebrafish housed in a laboratory environment. However, this evidence is still recent and accompanied by contradictory results. Furthermore, there is great variability in the protocols applied and in the conditions of the tests, tanks and materials used to generate an enriched environment. This substantial variability can bring many uncertainties to the development of future studies and hinder the reproducibility and replicability of research. Here, in this context, we carried out a systematic review of the literature, aiming to provide an overview of the EE protocols used in zebrafish research. The literature search was performed in PubMed, Scopus and Web of Science and the studies were selected on the basis of predefined inclusion/exclusion criteria. A total of 901 articles were identified in the databases, and 27 of those studies were included in this review. We conducted data extraction and risk-of-bias analysis in the included studies. Among these studies, the effect of EE was evaluated in two different ways: (1) for animal welfare and (2) as an intervention to prevent behavioral, biochemical, molecular, developmental and breeding dysfunctions. Although the EE protocols in zebrafish presented a series of experimental differences, the results showed that the benefits of the EE for zebrafish were consistent. According to the results described here, the use of EE in the zebrafish home tank improves welfare and may reduce sources of bias in scientific research. However, it is still necessary to develop standardized protocols to improve the application of EE in scientific studies using zebrafish.


Subject(s)
Environment , Zebrafish , Animals , Reproducibility of Results , Animals, Laboratory , Behavior, Animal
2.
Pharmacol Rep ; 75(6): 1544-1555, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37814098

ABSTRACT

BACKGROUND: Epilepsy is a prevalent neurological disease, affecting approximately 1-2% of the global population. The hallmark of epilepsy is the occurrence of epileptic seizures, which are characterized by predictable behavioral changes reflecting the underlying neural mechanisms of the disease. Unfortunately, around 30% of patients do not respond to current pharmacological treatments. Consequently, exploring alternative therapeutic options for managing this condition is crucial. Two potential candidates for attenuating seizures are N-acetylcysteine (NAC) and Acetyl-L-carnitine (ALC), as they have shown promising neuroprotective effects through the modulation of glutamatergic neurotransmission. METHODS: This study aimed to assess the effects of varying concentrations (0.1, 1.0, and 10 mg/L) of NAC and ALC on acute PTZ-induced seizures in zebrafish in both adult and larval stages. The evaluation of behavioral parameters such as seizure intensity and latency to the crisis can provide insights into the efficacy of these substances. RESULTS: Our results indicate that both drugs at any of the tested concentrations were not able to reduce PTZ-induced epileptic seizures. On the other hand, the administration of diazepam demonstrated a notable reduction in seizure intensity and increased latencies to higher scores of epileptic seizures. CONCLUSION: Consequently, we conclude that, under the conditions employed in this study, NAC and ALC do not exhibit any significant effects on acute seizures in zebrafish.


Subject(s)
Epilepsy , Zebrafish , Animals , Humans , Adult , Acetylcysteine/therapeutic use , Acetylcarnitine/adverse effects , Larva , Pentylenetetrazole/toxicity , Seizures/chemically induced , Seizures/drug therapy , Epilepsy/drug therapy , Anticonvulsants/therapeutic use , Disease Models, Animal
3.
Environ Sci Pollut Res Int ; 30(8): 21144-21155, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36264473

ABSTRACT

Ochratoxin A (OTA) is a mycotoxin produced by species of filamentous fungi widely found as a contaminant in food and with high toxic potential. Studies have shown that this toxin causes kidney and liver damage; however, data on the central nervous system effects of exposure to OTA are still scarce. Thus, this study aimed to investigate the effects of exposure to OTA on behavioral and neurochemical parameters in adult zebrafish. The animals were treated with different doses of OTA (1.38, 2.77, and 5.53 mg/kg) with intraperitoneal injections and submitted to behavioral evaluations in the open tank and social interaction tests. Subsequently, they were euthanized, and the brains were used to assess markers associated with oxidative status. In the open tank test, OTA altered distance traveled, absolute turn angle, mean speed, and freezing time. However, no significant effects were observed in the social interaction test. Moreover, OTA also increased glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR) levels and decreased non-protein thiols (NPSH) levels in the zebrafish brain. This study showed that OTA can affect behavior and neurochemical levels in zebrafish.


Subject(s)
Ochratoxins , Zebrafish , Animals , Ochratoxins/toxicity , Oxidation-Reduction , Oxidative Stress , Locomotion
4.
Eur J Neurosci ; 56(5): 4546-4557, 2022 09.
Article in English | MEDLINE | ID: mdl-35831240

ABSTRACT

Studies regarding the animals' innate preferences help elucidate and avoid probable sources of bias and serve as a reference to improve and develop new behavioural tasks. In zebrafish research, data obtained in behavioural assessments are often not replicated between research groups or even inside the same laboratory raising huge concerns about replicability and reproducibility. Among the potential causes that are not well considered, sexual differences can be a probable source of bias. Thus, this study aimed to investigate the male and female zebrafish directional and colour preferences in the plus-maze and T-maze behavioural tasks. Experiment 1 evaluated directional preference, and experiment 2 evaluated colour preference in a plus-maze task; experiment 3 evaluated preference between black or white in a T-maze task. Individual preferences were expressed as the percentage of time spent in each zone. Our results showed that male and female zebrafish demonstrated no difference in directional preference in the plus-maze task. Surprisingly, male and female zebrafish showed colour preference differences in the plus-maze task; males did not show any colour preference, while female zebrafish demonstrated a red preference compared to white, blue and yellow colours. Moreover, both male and female zebrafish demonstrated a strong black colour preference compared to the white colour in the T-maze task. Our findings characterized the spontaneous preference of male and female zebrafish for direction and colour, identifying possible biases and providing insights that contribute to the standardization of future protocols.


Subject(s)
Color Perception , Zebrafish , Animals , Color , Female , Male , Reproducibility of Results
5.
Pharmacol Rep ; 74(4): 736-744, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35852770

ABSTRACT

BACKGROUND: Curcumin, a polyphenol extracted from the rhizome of Curcuma longa L. (Zingiberaceae), presents neuroprotective properties and can modulate neuronal pathways related to mental disorders. However, curcumin has low bioavailability, which can compromise its use. The micronization process can reduce mean particle diameter and improve this compound's bioavailability and therapeutic potential. METHODS: We compared the behavioral (open tank test, OTT) and neurochemical (thiobarbituric acid reactive substances (TBARS) and non-protein thiols (NPSH) levels) effects of non-micronized curcumin (CUR, 10 mg/kg, ip) and micronized curcumin (MC, 10 mg/kg, ip) in adult zebrafish subjected to a 90-min acute restraint stress (ARS) protocol. RESULTS: ARS increased the time spent in the central area and the number of crossings and decreased the immobility time of the animals in the OTT. These results suggest an increase in locomotor activity and a decrease in thigmotaxis behavior. Both CUR and MC were not able to prevent these effects. Furthermore, ARS also induced oxidative damage by increasing TBARS and decreasing NPSH levels. Both CUR and MC did not prevent these effects. CONCLUSION: ARS-induced behavioral and biochemical effects were not blocked by any curcumin preparation. Therefore, we conclude that curcumin does not have acute anti-stress effects in zebrafish.


Subject(s)
Curcumin , Animals , Antioxidants/pharmacology , Curcumin/pharmacology , Curcumin/therapeutic use , Humans , Oxidative Stress , Thiobarbituric Acid Reactive Substances , Zebrafish
6.
Curr Neuropharmacol ; 20(3): 494-509, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-33588731

ABSTRACT

Schizophrenia pathophysiology is associated with hypofunction of glutamate NMDA receptors (NMDAR) in GABAergic interneurons and dopaminergic hyperactivation in subcortical brain areas. The administration of NMDAR antagonists is used as an animal model that replicates behavioral phenotypes relevant to the positive, negative, and cognitive symptoms of schizophrenia. Such models overwhelmingly rely on rodents, which may lead to species-specific biases and poor translatability. Zebrafish, however, is increasingly used as a model organism to study evolutionarily conserved aspects of behavior. We thus aimed to review and integrate the major findings reported in the zebrafish literature regarding the behavioral effects of NMDAR antagonists with relevance to schizophrenia. We identified 44 research articles that met our inclusion criteria from 590 studies retrieved from MEDLINE (PubMed) and Web of Science databases. Dizocilpine (MK-801) and ketamine were employed in 29 and 10 studies, respectively. The use of other NMDAR antagonists, such as phencyclidine (PCP), APV, memantine, and tiletamine, was described in 6 studies. Frequently reported findings are the social interaction and memory deficits induced by MK-801 and circling behavior induced by ketamine. However, mixed results were described for several locomotor and exploratory parameters in the novel tank and open tank tests. The present review integrates the most relevant results while discussing variation in experimental design and methodological procedures. We conclude that zebrafish is a suitable model organism to study drug-induced behavioral phenotypes relevant to schizophrenia. However, more studies are necessary to further characterize the major differences in behavior as compared to mammals.


Subject(s)
Excitatory Amino Acid Antagonists , Schizophrenia , Animals , Disease Models, Animal , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid , Mammals , Receptors, N-Methyl-D-Aspartate , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Zebrafish
7.
J Neurosci Res ; 99(11): 2844-2859, 2021 11.
Article in English | MEDLINE | ID: mdl-34496062

ABSTRACT

Schizophrenia pathophysiology has been associated with dopaminergic hyperactivity, NMDA receptor hypofunction, and redox dysregulation. Most behavioral assays and animal models to study this condition were developed in rodents, leaving room for species-specific biases that could be avoided by cross-species approaches. As MK-801 and amphetamine are largely used in mice and rats to mimic schizophrenia features, this study aimed to compare the effects of these drugs in several zebrafish (Danio rerio) behavioral assays. Male and female adult zebrafish were exposed to MK-801 (1, 5, and 10 µM) or amphetamine (0.625, 2.5, and 10 mg/L) and observed in paradigms of locomotor activity and social behavior. Oxidative parameters were quantified in brain tissue. Our results demonstrate that MK-801 disrupted social interaction, an effect that resembles the negative symptoms of schizophrenia. It also altered locomotion in a context-dependent manner, with hyperactivity when fish were tested in the presence of social cues and hypoactivity when tested alone. On the other hand, exposure to amphetamine was devoid of effects on locomotion and social behavior, while it increased lipid peroxidation in the brain. Key outcomes induced by MK-801 in rodents, such as social interaction deficit and locomotor alterations, were replicated in zebrafish, corroborating previous studies and reinforcing the use of zebrafish to study schizophrenia-related endophenotypes. More studies are necessary to assess the predictive validity of preclinical paradigms with this species and ultimately optimize the screening of potential novel treatments.


Subject(s)
Dizocilpine Maleate , Schizophrenia , Amphetamine/pharmacology , Animals , Dizocilpine Maleate/adverse effects , Endophenotypes , Female , Male , Mice , Rats , Receptors, N-Methyl-D-Aspartate , Schizophrenia/chemically induced , Zebrafish/physiology
8.
Naunyn Schmiedebergs Arch Pharmacol ; 393(4): 591-601, 2020 04.
Article in English | MEDLINE | ID: mdl-31768573

ABSTRACT

Anxiety disorders are highly prevalent and a leading cause of disability worldwide. Their etiology is related to stress, an adaptive response of the organism to restore homeostasis, in which oxidative stress and glutamatergic hyperactivity are involved. N-Acetylcysteine (NAC) is a multitarget approved drug proved to be beneficial in the treatment of various mental disorders. Nevertheless, NAC has low membrane permeability and poor bioavailability and its limited delivery to the brain may explain inconsistencies in the literature. N-Acetylcysteine amide (AD4) is a synthetic derivative of NAC in which the carboxyl group was modified to an amide. The amidation of AD4 improved lipophilicity and blood-brain barrier permeability and enhanced its antioxidant properties. The purpose of this study was to investigate the effects of AD4 on behavioral and biochemical parameters in zebrafish anxiety models. Neither AD4 nor NAC induced effects on locomotion and anxiety-related parameters in the novel tank test. However, in the light/dark test, AD4 (0.001 mg/L) increased the time spent in the lit side in a concentration 100 times lower than NAC (0.1 mg/L). In the acute restraint stress protocol, NAC and AD4 (0.001 mg/L) showed anxiolytic properties without meaningful effects on oxidative status. The study suggests that AD4 has anxiolytic effects in zebrafish with higher potency than the parent compound. Additional studies are warranted to characterize the anxiolytic profile of AD4 and its potential in the management of anxiety disorders.


Subject(s)
Acetylcysteine/analogs & derivatives , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Stress, Psychological/drug therapy , Acetylcysteine/therapeutic use , Animals , Behavior, Animal/drug effects , Female , Male , Oxidative Stress/drug effects , Zebrafish
9.
Ecotoxicology ; 29(2): 140-147, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31865514

ABSTRACT

Pesticide commercial mixtures, including the insecticide fipronil and the fungicides pyraclostrobin and methyl-thiophanate, have been used in concomitant pest control, facilitating agricultural management. Their widespread use can lead to soil and water contamination and potentially induce damages in the ecosystem, producing toxic effects in non-target organisms. Despite their toxicological potential, their effects on behavioral and biochemical parameters are not well understood. Here we investigated the effects of the mixture of fipronil and fungicides (MFF) pyraclostrobin and methyl- thiophanate on behavioral and biochemical parameters of oxidative stress in adult zebrafish. Animals exposed to the highest MFF tested concentration showed a decrease in the total distance traveled and in the number of crossings in the different zones of the tank. Furthermore, animals exposed to highest MFF tested concentration spent more time in water surface. In addition, our data showed that the exposure to this preparation promoted a decrease in non-protein thiol content as well as in catalase activity. Finally, pesticide exposure induced an increase in the superoxide dismutase/catalase ratio. Our results indicate that alterations in behavioral and oxidative parameters are involved in MFF toxicity in zebrafish. The antioxidant mechanisms analyzed were altered in concentrations that did not affect zebrafish behavior. Therefore, the assessment of oxidative stress parameters in zebrafish brains could be very useful to detect the early effects of environmental exposure to the MFF.


Subject(s)
Pyrazoles/toxicity , Zebrafish/physiology , Animals , Antioxidants , Behavior, Animal/physiology , Fungicides, Industrial , Oxidative Stress/physiology , Water Pollutants, Chemical/toxicity
10.
Environ Sci Pollut Res Int ; 26(27): 27808-27815, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31342352

ABSTRACT

The use of pesticides has been growing along with the demand for agricultural products. These compounds, however, are not restricted to the field, spreading easily through the soil, contaminating groundwater and reaching urban centers. Propiconazole is a triazole fungicide that has been increasingly used in agriculture. However, there are few data about its effects on non-target organisms. This study aimed to evaluate the effects of propiconazole in zebrafish. The animals were exposed for 96 h to different concentrations of propiconazole (425, 850, 1700, 8500 ng/L), then submitted to the novel tank test for behavioral analyses. The brains were collected for evaluation of oxidative stress parameters. Exposure to propiconazole (1700 and 8500 ng/L) decreased the number of crossings, entries, and time spent in the top, and increased the time spent in the bottom area of the tank. We also observed an increase in the activities of superoxide dismutase and catalase in zebrafish brain exposed to propiconazole at 425, 850, and 1700 ng/L. We conclude that propiconazole alters normal fish behavior and disrupts oxidative status. More studies are necessary to elucidate the exact mechanism underlying the effects of propiconazole on non-target-organisms.


Subject(s)
Catalase/chemistry , Fungicides, Industrial/analysis , Oxidative Stress/drug effects , Superoxide Dismutase/chemistry , Triazoles/analysis , Agriculture , Animals , Fungicides, Industrial/chemistry , Groundwater , Pesticides/analysis , Pesticides/chemistry , Soil , Triazoles/chemistry , Zebrafish
11.
J Environ Manage ; 244: 294-303, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31128334

ABSTRACT

The use of waste materials in the building industry is a major challenge for eco-efficient construction. Brazil generates more than 3 million tons of waste foundry sand (WFS) annually, making it one of the largest industrial wastes produced in the country. This work proposes the use of WFS in two novel ways: in conventional concrete by WFS calcination, and in dry-mix concrete for the production of concrete blocks. For the conventional mixture study, mortars with 0, 50 and 100% replacement of natural sand by WFS and calcined WFS (CFS) were produced. The fresh state properties, volumetric variation, cement hydration and 28-days compressive strength of the mortars were evaluated. For the dry-mix concrete study, compositions with two densities (2.20 and 2.25 g/cm3), three cement contents and 0, 50 and 100% WFS in natural sand replacement were produced in the laboratory. Furthermore, concrete blocks of different strength ranges and 0 and 100% WFS in natural sand replacement were produced in a concrete block manufacturing plant for full-scale testing. The results showed that the use of WFS led to reductions in flowability and compressive strength of the mortars, but did not cause expansion as initially expected. In contrast, the use of up to 100% CFS resulted in mortars with flowability and compressive strength similar to those of the reference. WFS calcination removed the pulverized coal and may have formed pozzolanic phases in the clay material. As a result, the CFS presented performance similar to that of natural sand. In dry-mix concrete, the laboratory results showed that the use of 100% WFS resulted in similar strengths to the reference for concretes of up to 20 MPa. Finally, full-scale tests showed that it was possible to produce concrete blocks with 100% WFS and strengths compatible to the reference.


Subject(s)
Construction Materials , Industrial Waste , Brazil , Compressive Strength , Silicon Dioxide
12.
Article in English | MEDLINE | ID: mdl-30946939

ABSTRACT

Alcohol abuse is a highly prevalent condition that substantially contributes to global morbidity and mortality. Most available pharmacological treatments offer little efficacy as relapse rates are high, due in part to the symptoms experienced during abstinence. The roles of oxidative stress and glutamatergic transmission in alcohol withdrawal have been demonstrated in several studies, suggesting that restoration of oxidative status and glutamatergic function may represent a new pharmacological target to prevent the behavioral and biochemical alterations observed during withdrawal. A well-known antioxidant and glutamatergic modulator, N-acetylcysteine (NAC), has shown promise in treating a variety of psychiatric conditions, including substance use disorders, and is a promising molecule in the management of alcohol withdrawal syndrome. Thus, the aim of this study was to investigate whether NAC is able to prevent the expression of behavioral and biochemical alterations induced by ethanol withdrawal in chronically exposed zebrafish. Animals were exposed to ethanol (1% v/v, 20 min) or control water, followed by treatment with NAC (1 mg/L, 10 min) or control water daily for 8 days; 24 h later, experimental animals were submitted to the novel tank test (NTT). Ethanol withdrawal decreased the distance traveled and increased the number of immobile episodes, indicating locomotor deficits; moreover, withdrawal decreased the number of entries and time spent in the top area, while increasing time spent in the bottom area, indicating anxiety-like behavior. Alcohol withdrawal also increased lipid peroxidation (TBARS) and decreased non-protein reduced sulfhydryl (NPSH) and superoxide dismutase (SOD) and catalase (CAT) activities. NAC attenuated these locomotor deficits and prevented the manifestation of anxiety-like behavior as well as the oxidative damage observed following ethanol withdrawal. Given its favorable safety profile, additional clinical and preclinical studies are warranted to unravel the long-term effects of NAC in the context of alcohol abuse and the exact mechanisms involved. Nevertheless, our study adds to the existing body of evidence supporting the clinical evaluation of NAC in substance abuse disorders.


Subject(s)
Acetylcysteine/therapeutic use , Ethanol/adverse effects , Substance Withdrawal Syndrome/prevention & control , Animals , Anxiety/chemically induced , Anxiety/prevention & control , Brain/drug effects , Brain/metabolism , Catalase/metabolism , Disease Models, Animal , Female , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Zebrafish
13.
Neuropharmacology ; 150: 145-152, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30917915

ABSTRACT

Stress-related psychiatric disorders are mental conditions that affect mood, cognition and behavior and arise because of the impact of prolonged stress on the central nervous system (CNS). Acetyl-L-carnitine (ALC) is an acetyl ester of L-carnitine that easily crosses the blood-brain barrier and was recently found to be decreased in patients with major depressive disorder. ALC plays a role in energy metabolism and is widely consumed as a nutritional supplement to improve physical performance. In this study, our objective was to evaluate the effects of ALC treatment (0.1 mg/L, 10 min) for 7 days on behavior and oxidative stress in zebrafish subjected to unpredictable chronic stress (UCS) protocol. Behavioral outcomes were assessed in the novel tank test, and parameters of oxidative status (lipid peroxidation and antioxidant defenses) were evaluated in the brain using colorimetric methods. According to our previous findings, UCS increased anxiety-like behavior and lipid peroxidation, while it decreased non-protein thiol levels and superoxide dismutase activity. However, ALC reversed the anxiety-like behavior and oxidative damage in stressed animals, while it was devoid of effect in control animals. Although our data reinforce the neuroprotective potential of ALC in the treatment of psychiatric disorders related to stress, further investigations are required to clarify its mechanisms of action and confirm its efficacy.


Subject(s)
Acetylcarnitine/pharmacology , Antioxidants/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Oxidative Stress/drug effects , Acetylcarnitine/therapeutic use , Animals , Antioxidants/therapeutic use , Brain/metabolism , Female , Lipid Peroxidation/drug effects , Male , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Zebrafish
14.
Mol Neurobiol ; 56(2): 1188-1195, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29876880

ABSTRACT

There is accumulating evidence on the use of N-acetylcysteine (NAC) in the treatment of patients with neuropsychiatric disorders. As a multi-target drug and a glutathione precursor, NAC is a promising molecule in the management of stress-related disorders, for which there is an expanding field of research investigating novel therapies targeting oxidative pathways. The deleterious effects of chronic stress in the central nervous system are a result of glutamatergic hyperactivation, glutathione (GSH) depletion, oxidative stress, and increased inflammatory response, among others. The aim of this study was to investigate the effects of NAC in zebrafish submitted to unpredictable chronic stress (UCS). Animals were initially stressed or not for 7 days, followed by treatment with NAC (1 mg/L, 10 min) or vehicle for 7 days. UCS decreased the number of entries and time spent in the top area in the novel tank test, which indicate increased anxiety levels. It also increased reactive oxygen species (ROS) levels and lipid peroxidation (TBARS) while decreased non-protein thiols (NPSH) and superoxide dismutase (SOD) activity. NAC reversed the anxiety-like behavior and oxidative damage observed in stressed animals. Additional studies are needed to investigate the effects of this agent on glutamatergic modulation and inflammatory markers related to stress. Nevertheless, our study adds to the existing body of evidence supporting the clinical evaluation of NAC in mood disorders, anxiety, post-traumatic stress disorder, and other conditions associated with stress.


Subject(s)
Acetylcysteine/pharmacology , Antioxidants/pharmacology , Anxiety/drug therapy , Behavior, Animal/drug effects , Brain/drug effects , Oxidative Stress/drug effects , Stress, Psychological/drug therapy , Acetylcysteine/therapeutic use , Animals , Antioxidants/therapeutic use , Anxiety/metabolism , Brain/metabolism , Glutathione/metabolism , Lipid Peroxidation/drug effects , Reactive Oxygen Species/metabolism , Stress, Psychological/metabolism , Superoxide Dismutase/metabolism , Zebrafish
15.
PeerJ ; 6: e5309, 2018.
Article in English | MEDLINE | ID: mdl-30083453

ABSTRACT

Studies have suggested that oxidative stress may contribute to the pathogenesis of mental disorders. In this context, molecules with antioxidant activity may be promising agents in the treatment of these deleterious conditions. Acetyl-L-carnitine (ALC) is a multi-target molecule that modulates the uptake of acetyl-CoA into the mitochondria during fatty acid oxidation, acetylcholine production, protein, and membrane phospholipid synthesis, capable of promoting neurogenesis in case of neuronal death. Moreover, neurochemical effects of ALC include modulation of brain energy and synaptic transmission of multiple neurotransmitters, including expression of type 2 metabotropic glutamate (mGlu2) receptors. The aim of this study was to investigate the effects of ALC in zebrafish by examining behavioral and biochemical parameters relevant to anxiety and mood disorders in zebrafish. ALC presented anxiolytic effects in both novel tank and light/dark tests and prevented the anxiety-like behavior induced by an acute stressor (net chasing). Furthermore, ALC was able to prevent the lipid peroxidation induced by acute stress in the zebrafish brain. The data presented here warrant further investigation of ALC as a potential agent in the treatment of neuropsychiatric disorders. Its good tolerability also subsidizes the additional studies necessary to assess its therapeutic potential in clinical settings.

16.
PeerJ ; 6: e5136, 2018.
Article in English | MEDLINE | ID: mdl-30002970

ABSTRACT

BACKGROUND: The enriched environment (EE) is a laboratory housing model that emerged from efforts to minimize the impact of environmental conditions on laboratory animals. Recently, we showed that EE promoted positive effects on behavior and cortisol levels in zebrafish submitted to the unpredictable chronic stress (UCS) protocol. Here, we expanded the characterization of the effects of UCS protocol by assessing parameters of oxidative status in the zebrafish brain and reveal that EE protects against the oxidative stress induced by chronic stress. METHODS: Zebrafish were exposed to EE (21 or 28 days) or standard housing conditions and subjected to the UCS protocol for seven days. Oxidative stress parameters (lipid peroxidation (TBARS), reactive oxygen species (ROS) levels, non-protein thiol (NPSH) and total thiol (SH) levels, superoxide dismutase (SOD) and catalase (CAT) activities were measured in brain homogenate. RESULTS: Our results revealed that UCS increased lipid peroxidation and ROS levels, while decreased NPSH levels and SOD activity, suggesting oxidative damage. EE for 28 days prevented all changes induced by the UCS protocol, and EE for 21 days prevented the alterations on NPSH levels, lipid peroxidation and ROS levels. Both EE for 21 or 28 days increased CAT activity. DISCUSSION: Our findings reinforce the idea that EE exerts neuromodulatory effects in the zebrafish brain. EE promoted positive effects as it helped maintain the redox homeostasis, which may reduce the susceptibility to stress and its oxidative impact.

17.
PeerJ ; 6: e4957, 2018.
Article in English | MEDLINE | ID: mdl-29868300

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder. In addition to its highly debilitating motor symptoms, non-motor symptoms may precede their motor counterparts by many years, which may characterize a prodromal phase of PD. A potential pharmacological strategy is to introduce neuroprotective agents at an earlier stage in order to prevent further neuronal death. N-acetylcysteine (NAC) has been used against paracetamol overdose hepatotoxicity by restoring hepatic concentrations of glutathione (GSH), and as a mucolytic in chronic obstructive pulmonary disease by reducing disulfide bonds in mucoproteins. It has been shown to be safe for humans at high doses. More recently, several studies have evidenced that NAC has a multifaceted mechanism of action, presenting indirect antioxidant effect by acting as a GSH precursor, besides its anti-inflammatory and neurotrophic effects. Moreover, NAC modulates glutamate release through activation of the cystine-glutamate antiporter in extra-synaptic astrocytes. Its therapeutic benefits have been demonstrated in clinical trials for several neuropsychiatric conditions but has not been tested in PD models yet. METHODS: In this study, we evaluated the potential of NAC to prevent the damage induced by 6-hydroxydopamine (6-OHDA) on motor, optomotor and morphological parameters in a PD model in larval zebrafish. RESULTS: NAC was able to prevent the motor deficits (total distance, mean speed, maximum acceleration, absolute turn angle and immobility time), optomotor response impairment and morphological alterations (total length and head length) caused by exposure to 6-OHDA, which reinforce and broaden the relevance of its neuroprotective effects. DISCUSSION: NAC acts in different targets relevant to PD pathophysiology. Further studies and clinical trials are needed to assess this agent as a candidate for prevention and adjunctive treatment of PD.

18.
J Exp Biol ; 221(Pt 4)2018 02 22.
Article in English | MEDLINE | ID: mdl-29361609

ABSTRACT

Several studies have shown that manipulations to the housing environment modulate susceptibility to stress in laboratory animals, mainly in rodents. Environmental enrichment (EE) is one such manipulation that promotes neuroprotection and neurogenesis, besides affecting behaviors such as drug self-administration. Zebrafish are a popular and useful animal model for behavioral neuroscience studies; however, studies evaluating the impact of housing conditions in this species are scarce. In this study, we verified the effects of EE on behavioral (novel tank test) and biochemical [cortisol and reactive oxygen species (ROS)] parameters in zebrafish submitted to unpredictable chronic stress (UCS). Consistent with our previous findings, UCS increased anxiety-like behavior, cortisol and ROS levels in zebrafish. EE for 21 or 28 days attenuated the effects induced by UCS on behavior and cortisol, and prevented the effects on ROS levels. Our findings reinforce the idea that EE exerts neuromodulatory effects across species, reducing vulnerability to stress and its biochemical impact. Also, these results indicate that zebrafish is a suitable model animal to study the behavioral effects and neurobiological mechanisms related to EE.


Subject(s)
Animal Welfare , Environment , Stress, Physiological , Zebrafish/physiology , Animals , Female , Housing, Animal , Hydrocortisone/metabolism , Male , Models, Animal , Random Allocation , Reactive Oxygen Species/metabolism
19.
Neurochem Res ; 43(2): 458-464, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29196951

ABSTRACT

Alcohol hangover refers to unpleasant symptoms experienced as a direct consequence of a binge drinking episode. The effects observed in this condition are related to the increase in alcohol metabolites and imbalance in oxidative status. N-acetylcysteine (NAC) is a mucolytic agent and an antidote for paracetamol overdose. Preclinical and clinical studies have shown that NAC is a multi-target drug acting through neuroprotective, antioxidant and neurotrophic mechanisms as well as a glutamate modulator. The aim of this study was to investigate the effects of NAC in zebrafish acutely exposed to ethanol (EtOH). Animals pretreated or not with NAC (1 mg/L, 10 min) were exposed for 60 min to standard tank water (EtOH-) or to 1% EtOH (EtOH+) to evaluate anxiety-like behavior and locomotion in the novel tank test and oxidative damage in the brain. Zebrafish (Danio rerio) exposed to EtOH displayed a decrease in the distance traveled, crossings, entries and time spent in the top area in the novel tank test. Exposure to EtOH also caused oxidative damage, shown by increased lipid peroxidation, decreased non-protein thiols and increased production of reactive oxygen species (DCF assay). NAC prevented both the behavioral alterations and the oxidative stress observed in EtOH+ animals. Given the effects of NAC in preventing the acute behavioral and biochemical effects of EtOH, additional studies are warranted to further investigate the basis of its anecdotal use to prevent hangover.


Subject(s)
Acetylcysteine/pharmacology , Behavior, Animal/drug effects , Ethanol/pharmacology , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Animals , Anxiety/prevention & control , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Ethanol/administration & dosage , Female , Male , Zebrafish
20.
Physiol Behav ; 171: 50-54, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28039073

ABSTRACT

Chronic stress may cause physical, behavioral and neuropsychiatric changes, affecting the health condition of an individual. Aggression is a universal behavior with great relevance on human and animal social systems. Despite studies showing the influence of chronic stress on aggression, the effects of unpredictable chronic stress (UCS) on aggressive behavior in male and female zebrafish remain unknown. Thus, the aim of this study was to evaluate the effects of UCS on the aggressive behavior and cortisol levels in adult zebrafish of both sexes. Our results showed that UCS increased aggression in males, but not in females, which displayed more aggressive behavior at baseline than control males. Increased whole-body cortisol levels were observed in stressed males; however, no differences were found between female groups. In conclusion, we reported for the first time gender differences on behavioral parameters and cortisol levels in response to UCS in zebrafish. These results highlight the relevance of studying behavioral and physiological parameters in both sexes separately.


Subject(s)
Aggression/physiology , Hydrocortisone/metabolism , Sex Characteristics , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Analysis of Variance , Animals , Disease Models, Animal , Female , Locomotion/physiology , Male , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL