Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Strength Cond Res ; 25(5): 1437-46, 2011 May.
Article in English | MEDLINE | ID: mdl-21273914

ABSTRACT

The purpose of the study was to test the hypothesis on whether individuals with patellofemoral pain syndrome (PFPS) try to avoid knee position during upward squatting so as not to aggravate this syndrome. Also, we tested whether PFPS would generate changes in the kinetic and electromyographic (EMG) strategies used to perform this task. Eight healthy subjects and 8 subjects with PFPS, but without a history of pain for at least 30 days, took part in the experiment. They were asked to perform upward squatting with knees initially flexed at 60° (very flexed) until reaching an upright position. Angle, velocity, and acceleration (kinematic) were reconstructed for knee and ankle joints. The torques at these joints were calculated using inverse dynamics, taking into account anthropometric and inertial characteristics of each subject, including records from force data. Only activities of major muscles were recorded. The kinetic and EMG profiles were quantified during acceleration and deceleration phases of the upward squatting. Both healthy and PFPS subjects used the same kinetic and EMG strategies to perform the upward squatting, even though the magnitude of the muscle activities were decreased for the latter group. Compared to the control group, the PFPS subjects presented larger joint ankle torques and smaller knee joint torques. However, the subjects avoided keeping their knees very flexed at the initial position. Group differences in the kinetic and EMG strategies can be explained by differences in the initial position, suggesting a protective strategy used by subjects with PFPS. Therefore, for these subjects, coaches and therapists should avoid using this exercise when the knee is required to move above 40° flexion.


Subject(s)
Exercise Test/methods , Patellofemoral Pain Syndrome/physiopathology , Posture , Range of Motion, Articular/physiology , Adult , Ankle Joint/physiology , Biomechanical Phenomena , Case-Control Studies , Electromyography/methods , Female , Humans , Knee Joint/physiology , Male , Pain Measurement , Proprioception/physiology , Reference Values , Young Adult
2.
J Mot Behav ; 31(4): 303-308, 1999 Dec.
Article in English | MEDLINE | ID: mdl-11177639

ABSTRACT

The design of the present study enabled the authors to distinguish between the possible effects of movement displacement and trajectory length on the pattern of final positions of planar reaching movements. With their eyes closed, 9 subjects performed series of fast and accurate movements from different initial positions to the same target. For some series, the movements were unconstrained and were therefore performed along an approximately straight vertical line. For other series, an obstacle was positioned so that trajectory length was increased because of an increase in movement curvature. Ellipses of variability obtained by means of principal component analysis applied to the scatter of movement final positions enabled the authors to assess the pattern of movement variable errors. The results showed that the orientation of the ellipses was not affected by movement displacement or by trajectory length, whereas variable errors increased with movement displacement. An increase in trajectory length as a consequence of increased curvature caused no change in variable error. From the perspective of current motor control theory, that finding was quite unexpected. Further studies are required so that one can distinguish among the possible effects of various kinematics, kinetics, and other variables that could affect the pattern of variable errors of reaching movements.

SELECTION OF CITATIONS
SEARCH DETAIL
...