Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cells ; 13(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38994956

ABSTRACT

Clostridioides difficile (C. difficile) is responsible for a spectrum of nosocomial/antibiotic-associated gastrointestinal diseases that are increasing in global incidence and mortality rates. The C. difficile pathogenesis is due to toxin A and B (TcdA/TcdB), both causing cytopathic and cytotoxic effects and inflammation. Recently, we demonstrated that TcdB induces cytopathic and cytotoxic (apoptosis and necrosis) effects in enteric glial cells (EGCs) in a dose/time-dependent manner and described the underlying signaling. Despite the role played by lipids in host processes activated by pathogens, to counter infection and/or induce cell death, to date no studies have investigated lipid changes induced by TcdB/TcdA. Here, we evaluated the modification of lipid composition in our in vitro model of TcdB infection. Apoptosis, cell cycle, cell viability, and lipidomic profiles were evaluated in EGCs treated for 24 h with two concentrations of TcdB (0.1 ng/mL; 10 ng/mL). In EGCs treated with the highest concentration of TcdB, not only an increased content of total lipids was observed, but also lipidome changes, allowing the separation of TcdB-treated cells and controls into different clusters. The statistical analyses also allowed us to ascertain which lipid classes and lipid molecular species determine the clusterization. Changes in lipid species containing inositol as polar head and plasmalogen phosphatidylethanolamine emerged as key indicators of altered lipid metabolism in TcdB-treated EGCs. These results not only provide a picture of the phospholipid profile changes but also give information regarding the lipid metabolism pathways altered by TcdB, and this might represent an important step for developing strategies against C. difficile infection.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Neuroglia , Phospholipids , Neuroglia/metabolism , Neuroglia/drug effects , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Bacterial Toxins/pharmacology , Phospholipids/metabolism , Bacterial Proteins/metabolism , Clostridioides difficile/metabolism , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Lipidomics , Humans
2.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256032

ABSTRACT

Bacterial infections are characterized by an inflammatory response, which is essential for infection containment but is also responsible for negative effects on the host. The pathogen itself may have evolved molecular mechanisms to antagonize the antimicrobial effects of an inflammatory response and to enhance its pathogenicity using inflammatory response mediators, such as cytokines. Clostridioides difficile (C. difficile) infection (CDI) causes gastrointestinal diseases with markedly increasing global incidence and mortality rates. The main C. difficile virulence factors, toxin A and B (TcdA/TcdB), cause cytopathic/cytotoxic effects and inflammation. We previously demonstrated that TcdB induces enteric glial cell (EGC) apoptosis, which is enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha plus interferon gamma (CKs). However, it is unknown whether CKs-enhanced TcdB cytotoxicity (apoptosis/necrosis) is affected by the timing of the appearance of the CKs. Thus, we simulated in vitro, in our experimental model with TcdB and EGCs, three main situations of possible interactions between TcdB and the timing of CK stimulation: before TcdB infection, concomitantly with infection, or at different times after infection and persisting over time. In these experimental conditions, which all represent situations of possible interactions between C. difficile and the timing of CK stimulation, we evaluated apoptosis, necrosis, and cell cycle phases. The CKs, in all of these conditions, enhanced TcdB cytotoxicity, which from apoptosis became necrosis when CK stimulation persisted over time, and was most relevant after 48 h of TcdB:EGCs interaction. Particularly, the enhancement of apoptosis by CKs was dependent on the TcdB dose and in a less relevant manner on the CK stimulation time, while the enhancement of necrosis occurred always independently of the TcdB dose and CK stimulation time. However, since in all conditions stimulation with CKs strongly enhanced the TcdB cytotoxicity, it always had a negative impact on C. difficile pathogenicity. This study might have important implications for the treatment of CDI.


Subject(s)
Antineoplastic Agents , Bacterial Toxins , Boron Compounds , Clostridioides difficile , Clostridium Infections , Humans , Cytokines , Bacterial Toxins/toxicity , Necrosis
3.
Biology (Basel) ; 12(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37627001

ABSTRACT

Clostridioides difficile (C. difficile), responsible for 15-25% of gastrointestinal infections, causes health problems mainly due to the toxic activity of toxins A and B (Tcds). These are responsible for its clinical manifestations, including diarrhea, pseudomembranous colitis, toxic megacolon and death, with a mortality of 5-30% in primary infection, that increase following relapses. Studies on Tcd-induced cell death have highlighted a key role of caspases, calpains, and cathepsins, with involvement of mitochondria and reactive oxygen species (ROS) in a complex signaling pathway network. The complex response in the execution of various types of cell death (apoptosis, necrosis, pyroptosis and pyknosis) depends on the amount of Tcd, cell types, and Tcd receptors involved, and could have as initial/precocious event the alterations in calcium homeostasis. The entities, peculiarities and cell types involved in these alterations will decide the signaling pathways activated and cell death type. Calcium homeostasis alterations can be caused by calcium influx through calcium channel activation, transient intracellular calcium oscillations, and leakage of calcium from intracellular stores. These increases in cytoplasmic calcium have important effects on all calcium-regulated molecules, which may play a direct role in several cell death types and/or activate other cell death effectors, such as caspases, calpains, ROS and proapoptotic Bcl-2 family members. Furthermore, some support for the possible role of the calcium homeostasis alteration in Tcd-induced cell death originates from the similarity with cytotoxic effects that cause pore-forming toxins, based mainly on calcium influx through plasma membrane pores.

4.
Eur J Gastroenterol Hepatol ; 35(9): 985-988, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37505976

ABSTRACT

Many colorectal diseases depend on complex interactions between several pathophysiological factors, including the intestinal microbiota. In recent years, the widespread use of antibiotics has been recognized as a main cause of intestinal dysbiosis and a favouring factor for Clostridioides difficile infection. The latter, in addition, causes infectious diarrhoea, pseudomembranous colitis, and toxic megacolon by means of its toxins (A and, especially, B), is characterized by frequent relapses; thus, its persistence in a host may be long-lasting. Based on recent experimental evidence, here we analyse the possibility that, similarly to other bacteria, Clostridioides difficile may be considered a potential carcinogen for colorectal cancer.


Subject(s)
Clostridioides difficile , Clostridium Infections , Colorectal Neoplasms , Enterocolitis, Pseudomembranous , Humans , Clostridioides , Enterocolitis, Pseudomembranous/microbiology , Anti-Bacterial Agents/therapeutic use , Clostridium Infections/diagnosis , Clostridium Infections/epidemiology , Clostridium Infections/drug therapy , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/drug therapy
5.
Int J Mol Sci ; 24(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37175861

ABSTRACT

Clostridioides difficile (C. difficile) is responsible for a high percentage of gastrointestinal infections and its pathological activity is due to toxins A and B. C. difficile infection (CDI) is increasing worldwide due to the unstoppable spread of C. difficile in the anthropized environment and the progressive human colonization. The ability of C. difficile toxin B to induce senescent cells and the direct correlation between CDI, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD) could cause an accumulation of senescent cells with important functional consequences. Furthermore, these senescent cells characterized by long survival could push pre-neoplastic cells originating in the colon towards the complete neoplastic transformation in colorectal cancer (CRC) by the senescence-associated secretory phenotype (SASP). Pre-neoplastic cells could appear as a result of various pro-carcinogenic events, among which, are infections with bacteria that produce genotoxins that generate cells with high genetic instability. Therefore, subjects who develop IBS and/or IBD after CDI should be monitored, especially if they then have further CDI relapses, waiting for the availability of senolytic and anti-SASP therapies to resolve the pro-carcinogenic risk due to accumulation of senescent cells after CDI followed by IBS and/or IBD.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Colorectal Neoplasms , Inflammatory Bowel Diseases , Irritable Bowel Syndrome , Humans , Neoplasm Recurrence, Local , Inflammatory Bowel Diseases/microbiology
6.
World J Gastroenterol ; 29(4): 582-596, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36742168

ABSTRACT

Clostridioides difficile (C. difficile) is progressively colonizing humans and animals living with humans. During this process, hypervirulent strains and mutated toxin A and B of C. difficile (TcdA and TcdB) are originating and developing. While in healthy subjects colonization by C. difficile becomes a risk after the use of antibiotics that alter the microbiome, other categories of people are more susceptible to infection and at risk of relapse, such as those with inflammatory bowel disease (IBD). Recent in vitro studies suggest that this increased susceptibility could be due to the strong cytotoxic synergism between TcdB and proinflammatory cytokines the tumor necrosis factor-alpha and interferon-gamma (CKs). Therefore, in subjects with IBD the presence of an inflammatory state in the colon could be the driver that increases the susceptibility to C. difficile infection and its progression and relapses. TcdB is internalized in the cell via three receptors: chondroitin sulphate proteoglycan 4; poliovirus receptor-like 3; and Wnt receptor frizzled family. Chondroitin sulphate proteoglycan 4 and Wnt receptor frizzled family are involved in cell death by apoptosis or necrosis depending on the concentration of TcdB and cell types, while poliovirus receptor-like 3 induces only necrosis. It is possible that cytokines could also induce a greater expression of receptors for TcdB that are more involved in necrosis than in apoptosis. Therefore, in subjects with IBD there are the conditions: (1) For greater susceptibility to C. difficile infection, such as the inflammatory state, and abnormalities of the microbiome and of the immune system; (2) for the enhancement of the cytotoxic activity of TcdB +Cks; and (3) for a greater expression of TcdB receptors stimulated by cytokines that induce cell death by necrosis rather than apoptosis. The only therapeutic approach currently possible in IBD patients is monitoring of C. difficile colonization for interventions aimed at reducing tumor necrosis factor-alpha and interferon-gamma levels when the infection begins. The future perspective is to generate bacteriophages against C. difficile for targeted therapy.


Subject(s)
Antineoplastic Agents , Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Inflammatory Bowel Diseases , Animals , Humans , Bacterial Proteins/metabolism , Cytokines/metabolism , Enterotoxins , Inflammatory Bowel Diseases/drug therapy , Interferon-gamma/metabolism , Necrosis , Receptors, Wnt/metabolism , Tumor Necrosis Factor-alpha/metabolism
7.
Cell Mol Life Sci ; 79(8): 442, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35864342

ABSTRACT

Clostridioides difficile infection (CDI) causes nosocomial/antibiotic-associated gastrointestinal diseases with dramatically increasing global incidence and mortality rates. The main C. difficile virulence factors, toxins A and B (TcdA/TcdB), cause cytopathic/cytotoxic effects and inflammation. We demonstrated that TcdB induces caspase-dependent, mitochondria-independent enteric glial cell (EGC) apoptosis that is enhanced by the pro-inflammatory cytokines TNF-α and IFN-γ (CKs) by increasing caspase-3/7/9 and PARP activation. Because this cytotoxic synergism is important for CDI pathogenesis, we investigated the apoptotic pathways involved in TcdB- and TcdB + CK-induced apoptosis indepth. EGCs were pre-treated with the inhibitors BAF or Q-VD-OPh (pan-caspase), Z-DEVD-fmk (caspase-3/7), Z-IETD-fmk (caspase-8), PD150606 (calpains), and CA-074Me (cathepsin B) 1 h before TcdB exposure, while CKs were given 1.5 h after TcdB exposure, and assays were performed at 24 h. TcdB and TcdB + CKs induced apoptosis through three signalling pathways activated by calpains, caspases and cathepsins, which all are involved both in induction and execution apoptotic signalling under both conditions but to different degrees in TcdB and TcdB + CKs especially as regards to signal transduction mediated by these proteases towards downstream effects (apoptosis). Calpain activation by Ca2+ influx is the first pro-apoptotic event in TcdB- and TcdB + CK-induced EGC apoptosis and causes caspase-3, caspase-7 and PARP activation. PARP is also directly activated by calpains which are responsible of about 75% of apoptosis in TcdB and 62% in TcdB + CK which is both effector caspase-dependent and -independent. Initiator caspase-8 activation mediated by TcdB contributes to caspase-3/caspase-7 and PARP activation and is responsible of about 28% of apoptosis in both conditions. Caspase-3/caspase-7 activation is weakly responsible of apoptosis, indeed we found that it mediates 27% of apoptosis only in TcdB. Cathepsin B contributes to triggering pro-apoptotic signal and is responsible in both conditions of about 35% of apoptosis by a caspase-independent manner, and seems to regulate the caspase-3 and caspase-7 cleaved fragment levels, highlighting the complex interaction between these cysteine protease families activated during TcdB-induced apoptosis. Further a relevant difference between TcdB- and TcdB + CK-induced apoptosis is that TcdB-induced apoptosis increased slowly reaching at 72 h the value of 18.7%, while TcdB + CK-induced apoptosis increased strongly reaching at 72 h the value of 60.6%. Apoptotic signalling activation by TcdB + CKs is enriched by TNF-α-induced NF-κB signalling, inhibition of JNK activation and activation of AKT. In conclusion, the ability of C. difficile to activate three apoptotic pathways represents an important strategy to overcome resistance against its cytotoxic activity.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Apoptosis/physiology , Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Calpain/metabolism , Caspase 3/metabolism , Caspase 7/metabolism , Caspase 7/pharmacology , Caspases/metabolism , Cathepsin B/metabolism , Cytokines/metabolism , Humans , Neuroglia/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
8.
Therap Adv Gastroenterol ; 14: 17562848211032797, 2021.
Article in English | MEDLINE | ID: mdl-34413901

ABSTRACT

Clostridioides difficile infection (CDI) is on the rise worldwide and is associated with an increase in deaths and socio-health burden. C. difficile has become ubiquitous in anthropized environments because of the extreme resistance of its spores. Based on the epidemiological data and knowledge of molecular pathogenesis of C. difficile, it is possible to predict its progressive colonization of the human population for the following reasons: first, its global spread is unstoppable; second, the toxins (Tcds) produced by C. difficile, TcdA and TcdB, mainly cause cell death by apoptosis, but the surviving cells acquire a senescence state that favours persistence of C. difficile in the intestine; third, proinflammatory cytokines, tumour necrosis factor-α and interferon-γ, induced during CDI, enhance the cytotoxicity of Tcds and can increase the survival of senescent cells; fourth, Tcds block mobility and induce apoptosis in immune cells recruited at the infection site; and finally, after remission from primary infection or relapse, C. difficile causes functional abnormalities in the enteric glial cell (EGC) network that can result in irritable bowel syndrome, characterized by a latent inflammatory response that contributes to C. difficile survival and enhances the cytotoxic activity of low doses of TcdB, thus favouring further relapses. Since a 'global endemy' of C. difficile seems inevitable, it is necessary to develop an effective vaccine against Tcds for at-risk individuals, and to perform a prophylaxis/selective therapy with bacteriophages highly specific for C. difficile. We must be aware that CDI will become a global health problem in the forthcoming years, and we must be prepared to face this menace.

9.
J Inflamm Res ; 14: 57-62, 2021.
Article in English | MEDLINE | ID: mdl-33469335

ABSTRACT

Clostridioides difficile infection (CDI) has a serious impact on the healthcare system, and most of its pathogenic effects are mainly due to the activity of toxins A and B (TcdA and TcdB, respectively). The molecular mechanisms of their cytotoxic activity are well known, especially in the colon, where the infection occurs and normally remains localized. However, the mechanisms causing toxic effects on various systemic organs (extraintestinal manifestations) with frequent lethal outcomes in some patients affected by CDI are still poorly understood. Few studies are available that demonstrate low serum levels of Tcds in both experimental animal models and patients with CDI. Until now, it has remained unclear how low levels of circulating Tcds could lead to serious toxic effects. On the basis of our previous in vitro studies, in which the proinflammatory cytokines TNF-alpha and IFN-gamma strongly potentiated the toxic activity of low doses of TcdB, we hypothesize that the presence of both TcdB in the circulation and a systemic proinflammatory cytokine storm may be responsible for the selective severe effects of TcdB in some patients. This may occur in patients with severe CDI and systemic Tcds, in whom proinflammatory cytokines such as TNF-alpha and IFN-gamma reach a significant concentration in the circulation. This hypothesis could identify therapeutic interventions based on the reduction or neutralization of the indirect toxic action of these cytokines.

10.
J Inflamm Res ; 14: 7443-7453, 2021.
Article in English | MEDLINE | ID: mdl-35002278

ABSTRACT

Clostridioides difficile infection is widespread throughout countries and represents an important cause of nosocomial diarrhoea, with relatively high morbidity. This infection often occurs in patients with inflammatory bowel diseases and may complicate their clinical picture. Here, we propose, on the basis of evidence from basic science studies, that in patients affected by inflammatory bowel diseases, this infection might be facilitated by a derangement of the enteric glial cell (EGC) network caused by the effects of proinflammatory cytokines, such as tumour necrosis factor alpha and interferon gamma, which enhance the cytotoxic effects of C. difficile toxin B on EGCs. This hypothesis, if confirmed, could open the door to alternative treatment approaches to fight C. difficile infection.

11.
Microbiologyopen ; 9(8): e1061, 2020 08.
Article in English | MEDLINE | ID: mdl-32657021

ABSTRACT

Clostridioides difficile infection (CDI) represents an important health problem worldwide, with significant morbidity and mortality. This infection has also high recurrence rates, whose pathophysiological grounds are still poorly understood. Based on our experiments in vitro with Clostridioides difficile toxin B and existing experimental and clinical evidence, we propose that primary CDI and relapses might be favored by a mechanism that involves the enhancement of the toxicity of toxin B by proinflammatory cytokines, tumor necrosis factor alpha, and interferon gamma on the enteric glial cells and their network in an environment characterized by a strong dysmicrobism.


Subject(s)
Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Clostridioides difficile/pathogenicity , Clostridium Infections/pathology , Cytokines/metabolism , Inflammation/pathology , Clostridioides difficile/metabolism , Humans , Recurrence
12.
Cell Death Dis ; 9(12): 1160, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478302

ABSTRACT

As previously reported, chronic lymphocytic leukemia (CLL) cells show constitutive Notch1/2 activation and express the Notchligand Jagged1. Despite increasing knowledge of the impact of Notch alterations on CLL biology and pathogenesis, the role of Jagged1 expressed in CLL cells remains undefined. In other cell types, it has been shown that after Notch engagement, Jagged1 not only activates Notch in signal-receiving cell, but also undergoes proteolytic activation in signal-sending cell, triggering a signaling with biological effects. We investigated whether Jagged1 expressed in CLL cells undergoes proteolytic processing and/or is able to induce Notch activation through autocrine/paracrine loops, focusing on the effect that CLL prosurvival factor IL-4 could exert on the Notch-Jagged1 system in these cells. We found that Jagged1 was constitutively processed in CLL cells and generated an intracellular fragment that translocated into the nucleus, and an extracellular fragment released into the culture supernatant. IL-4 enhanced expression of Jagged1 and its intracellular fragments, as well as Notch1/2 activation. The IL-4-induced increase in Notch1/2 activation was independent of the concomitant upregulated Jagged1 levels. Indeed, blocking Notch-Jagged1 interactions among CLL cells with Jagged1 neutralizing antibodies did not affect the expression of the Notch target Hes1. Notably, anti-Jagged1 antibodies partially prevented the IL-4-induced increase in Jagged1 processing and cell viability, suggesting that Jagged1 processing is one of the events contributing to IL-4-induced CLL cell survival. Consistent with this, Jagged1 silencing by small interfering RNA partially counteracted the capacity of IL-4 to promote CLL cell survival. Investigating the pathways whereby IL-4 promoted Notch1/2 activation in CLL cells independent of Jagged1, we found that PI3Kδ/AKT and PKCδ were involved in upregulating Notch1 and Notch2 proteins, respectively. Overall, this study provides new insights into the Notch-ligand system in CLL cells and suggests that targeting this system may be exploited as a novel/additional therapy approach for CLL.


Subject(s)
Interleukin-4/genetics , Jagged-1 Protein/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Female , Gene Expression Regulation, Leukemic/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Protein Kinase C-delta/genetics , RNA, Small Interfering/genetics , Receptor, Notch1/genetics , Receptor, Notch2/genetics , Signal Transduction
13.
Biochim Biophys Acta Mol Cell Res ; 1865(12): 1945-1958, 2018 12.
Article in English | MEDLINE | ID: mdl-30296499

ABSTRACT

Clostridium difficile infection (CDI) causes nosocomial/antibiotic-associated diarrhea and pseudomembranous colitis, with dramatic incidence/mortality worldwide. C. difficile virulence factors are toxin A and toxin B (TcdB) which cause cytopathic/cytotoxic effects and inflammation. Until now studies were focused on molecular effects of C. difficile toxins (Tcds) on different cells while unexplored aspect is the status/fate of cells that survived their cytotoxicity. Recently we demonstrated that enteric glial cells (EGCs) are susceptible to TcdB cytotoxicity, but several EGCs survived and were irreversibly cell-cycle arrested and metabolically active, suggesting that EGCs could became senescent. This is important because allowed us to evaluate the not explored status/fate of cells surviving Tcds cytotoxicity, and particularly if TcdB induces senescence in EGCs. Rat-transformed EGCs were treated with 10 ng/ml TcdB for 6 h-48 h, or for 48 h, followed by incubation for additional 4 or 11 days in absence of TcdB (6 or 13 total days). Senescence markers/effectors were examined by specific assays. TcdB induces senescence in EGCs, as demonstrated by the senescence markers: irreversible cell-cycle arrest, senescence-associated-ß­galactosidase positivity, flat morphology, early and persistent DNA damage (ATM and H2AX phosphorylation), p27 overexpression, pRB hypophosphorylation, c­Myc, cyclin B1, cdc2 and phosphorylated-cdc2 downregulation, Sirtuin­2 and Sirtuin­3 overexpression. TcdB-induced EGC senescence is dependent by JNK and AKT activation but independent by ROS, p16 and p53/p21 pathways. In conclusion, TcdB induces senescence in EGCs. The extrapolation of these results to CDI leads to hypothesize that EGCs that survived TcdB, once they have acquired a senescence state, could cause irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and tumors due to persistent inflammation, transfer of senescence status and stimulation of pre-neoplastic cells.


Subject(s)
Bacterial Proteins/pharmacology , Bacterial Toxins/pharmacology , Clostridioides difficile/pathogenicity , Neuroglia/cytology , Animals , Cell Cycle Checkpoints , Cells, Cultured , Cellular Senescence , Clostridioides difficile/metabolism , DNA Damage , Gene Expression Regulation/drug effects , Neuroglia/drug effects , Neuroglia/microbiology , Rats , Signal Transduction
14.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(8): 895-908, 2018 08.
Article in English | MEDLINE | ID: mdl-29729479

ABSTRACT

Enteric glial cells (EGCs) are components of the enteric nervous system, an organized structure that controls gut functions. EGCs may be vulnerable to different agents, such as bacterial infections that could alter the intestinal epithelial barrier, allowing bacterial toxins and/or other agents possessing intrinsic toxic effect to access cells. Palmitate, known to exhibit lipotoxicity, is released in the gut during the digestion process. In this study, we investigated the lipotoxic effect of palmitate in cultured EGCs, with particular emphasis on palmitate-dependent intracellular lipid remodeling. Palmitate but not linoleate altered mitochondrial and endoplasmic reticulum lipid composition. In particular, the levels of phosphatidic acid, key precursor of phospholipid synthesis, increased, whereas those of mitochondrial cardiolipin (CL) decreased; in parallel, phospholipid remodeling was induced. CL remodeling (chains shortening and saturation) together with palmitate-triggered mitochondrial burst, caused cytochrome c (cyt c) detachment from its CL anchor and accumulation in the intermembrane space as soluble pool. Palmitate decreased mitochondrial membrane potential and ATP levels, without mPTP opening. Mitochondrial ROS permeation into the cytosol and palmitate-induced ER stress activated JNK and p38, culminating in Bim and Bax overexpression, factors known to increase the outer mitochondrial membrane permeability. Overall, in EGCs palmitate produced weakening of cyt c-CL interactions and favoured the egress of the soluble cyt c pool outside mitochondria to trigger caspase-3-dependent viability loss. Elucidating the mechanisms of palmitate lipotoxicity in EGCs may be relevant in gut pathological conditions occurring in vivo such as those following an insult that may damage the intestinal epithelial barrier.


Subject(s)
Cytochromes c/metabolism , Mitochondrial Membranes/metabolism , Neuroglia/metabolism , Palmitates/metabolism , Animals , Apoptosis , Cardiolipins/metabolism , Cell Line , Endoplasmic Reticulum/metabolism , Intestines/cytology , Intestines/innervation , Intestines/pathology , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Rats , Reactive Oxygen Species/metabolism
15.
Cell Mol Life Sci ; 75(7): 1145-1149, 2018 04.
Article in English | MEDLINE | ID: mdl-29285574

ABSTRACT

Post-infectious irritable bowel syndrome is a well-defined pathological entity that develops in about one-third of subjects after an acute infection (bacterial, viral) or parasitic infestation. Only recently it has been documented that an high incidence of post-infectious irritable bowel syndrome occurs after Clostridium difficile infection. However, until now it is not known why in some patients recovered from this infection the gastrointestinal disturbances persist for months or years. Based on our in vitro studies on enteric glial cells exposed to the effects of C. difficile toxin B, we hypothesize that persistence of symptoms up to the development of irritable bowel syndrome might be due to a disturbance/impairment of the correct functions of the enteroglial intestinal network.


Subject(s)
Clostridioides difficile/physiology , Clostridium Infections/microbiology , Enteric Nervous System/microbiology , Irritable Bowel Syndrome/microbiology , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Clostridioides difficile/metabolism , Host-Pathogen Interactions , Humans , Intestinal Mucosa/innervation , Intestinal Mucosa/microbiology , Models, Theoretical , Neuroglia/microbiology , Risk Factors
16.
Sci Rep ; 7: 45569, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28349972

ABSTRACT

Enteric glial cells (EGCs) are components of the intestinal epithelial barrier essential for regulating the enteric nervous system. Clostridium difficile is the most common cause of antibiotic-associated colitis, toxin B (TcdB) being the major virulence factor, due to its ability to breach the intestinal epithelial barrier and to act on other cell types. Here we investigated TcdB effects on EGCs and the activated molecular mechanisms. Already at 2 hours, TcdB triggered ROS formation originating from NADPH-oxidase, as demonstrated by their reduction in the presence of the NADPH-oxidase inhibitor ML171. Although EGCs mitochondria support almost completely the cellular ATP need, TcdB exerted weak effects on EGCs in terms of ATP and mitochondrial functionality, mitochondrial ROS production occurring as a late event. ROS activated the JNK signalling and overexpression of the proapoptotic Bim not followed by cytochrome c or AIF release to activate the downstream apoptotic cascade. EGCs underwent DNA fragmentation through activation of the ROS/JNK/caspase-3 axis, evidenced by the ability of ML171, N-acetylcysteine, and the JNK inhibitor SP600125 to inhibit caspase-3 or to contrast apoptosis. Therefore, TcdB aggressiveness towards EGCs is mainly restricted to the cytosolic compartment, which represents a peculiar feature, since TcdB primarily influences mitochondria in other cellular types.


Subject(s)
Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Caspase 3/metabolism , MAP Kinase Kinase 4/metabolism , NADPH Oxidases/metabolism , Neuroglia/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction , Animals , Cell Line , Neuroglia/enzymology , Neuroglia/metabolism , Rats
17.
Cell Mol Life Sci ; 74(8): 1527-1551, 2017 04.
Article in English | MEDLINE | ID: mdl-27891552

ABSTRACT

Clostridium difficile causes nosocomial/antibiotic-associated diarrhoea and pseudomembranous colitis. The major virulence factors are toxin A and toxin B (TcdB), which inactivate GTPases by monoglucosylation, leading to cytopathic (cytoskeleton alteration, cell rounding) and cytotoxic effects (cell-cycle arrest, apoptosis). C. difficile toxins breaching the intestinal epithelial barrier can act on underlying cells, enterocytes, colonocytes, and enteric neurons, as described in vitro and in vivo, but until now no data have been available on enteric glial cell (EGC) susceptibility. EGCs are crucial for regulating the enteric nervous system, gut homeostasis, the immune and inflammatory responses, and digestive and extradigestive diseases. Therefore, we evaluated the effects of C. difficile TcdB in EGCs. Rat-transformed EGCs were treated with TcdB at 0.1-10 ng/ml for 1.5-48 h, and several parameters were analysed. TcdB induces the following in EGCs: (1) early cell rounding with Rac1 glucosylation; (2) early G2/M cell-cycle arrest by cyclin B1/Cdc2 complex inactivation caused by p27 upregulation, the downregulation of cyclin B1 and Cdc2 phosphorylated at Thr161 and Tyr15; and (3) apoptosis by a caspase-dependent but mitochondria-independent pathway. Most importantly, the stimulation of EGCs with TNF-α plus IFN-γ before, concomitantly or after TcdB treatment strongly increased TcdB-induced apoptosis. Furthermore, EGCs that survived the cytotoxic effect of TcdB did not recover completely and showed not only persistent Rac1 glucosylation, cell-cycle arrest and low apoptosis but also increased production of glial cell-derived neurotrophic factor, suggesting self-rescuing mechanisms. In conclusion, the high susceptibility of EGCs to TcdB in vitro, the increased sensitivity to inflammatory cytokines related to apoptosis and the persistence of altered functions in surviving cells suggest an important in vivo role of EGCs in the pathogenesis of C. difficile infection.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Clostridioides difficile/physiology , Enterocolitis, Pseudomembranous/microbiology , Enterocolitis, Pseudomembranous/pathology , Gastrointestinal Tract/innervation , Neuroglia/microbiology , Neuroglia/pathology , Animals , Apoptosis , Cell Cycle Checkpoints , Cell Line , Enterocolitis, Pseudomembranous/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/pathology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Neuroglia/metabolism , Rats
18.
Oncotarget ; 6(18): 16559-72, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26041884

ABSTRACT

In chronic lymphocytic leukemia (CLL), Notch1 and Notch2 signaling is constitutively activated and contributes to apoptosis resistance. We show that genetic inhibition of either Notch1 or Notch2, through small-interfering RNA, increases apoptosis of CLL cells and is associated with decreased levels of the anti-apoptotic protein Mcl-1. Thus, Notch signaling promotes CLL cell survival at least in part by sustaining Mcl-1 expression. In CLL cells, an enhanced Notch activation also contributes to the increase in Mcl-1 expression and cell survival induced by IL-4.Mcl-1 downregulation by Notch targeting is not due to reduced transcription or degradation by caspases, but in part, to increased degradation by the proteasome. Mcl-1 downregulation by Notch targeting is also accompanied by reduced phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), suggesting that this protein is another target of Notch signaling in CLL cells.Overall, we show that Notch signaling sustains CLL cell survival by promoting Mcl-1 expression and eIF4E activity, and given the oncogenic role of these factors, we underscore the therapeutic potential of Notch inhibition in CLL.


Subject(s)
Eukaryotic Initiation Factor-4E/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Receptor, Notch1/genetics , Receptor, Notch2/genetics , Apoptosis/genetics , Cell Survival/genetics , Humans , RNA Interference , RNA, Small Interfering , Signal Transduction/genetics , Tumor Cells, Cultured
19.
Cell Microbiol ; 17(1): 79-104, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25130983

ABSTRACT

Group B Streptococcus (GBS) has evolved several strategies to avoid host defences. We have shown that interaction of macrophages with GBS causes macrophage calpain activation, cytoskeletal disruption and apoptosis, consequences of intracellular calcium increase induced by membrane permeability alterations provoked by GBS-ß-haemolysin. Open question remains about what effect calcium influx has on other calcium-sensing proteins such as gelsolin, involved in cytoskeleton modulation and apoptosis. Therefore we analysed the effect of GBS-III-COH31:macrophage interaction on gelsolin expression. Here we demonstrate that an early macrophage response to GBS-III-COH31 is a very strong gelsolin increase, which occurs in a time- and infection-ratio-dependent manner. This is not due to transcriptional events, translation events, protein turnover alterations, or protein-kinase activation, but to calcium influx, calpain activation and caspase-3 degradation. In fact, EGTA and PD150606 (calpain inhibitor) prevented gelsolin increase while BAF (caspase inhibitor) enhanced it. Since gelsolin increase is induced by highly ß-haemolytic GBS-III-NEM316 and GBS-V-10/84, but not by weakly ß-haemolytic GBS, or GBS-III-COH31 in conditions suppressing ß-haemolysin expression/activity and the presence of dipalmitoylphosphatidylcholine (ß-haemolysin inhibitor), GBS-ß-haemolysin is solely responsible for gelsolin increase causing, through membrane permeability defects, calcium influx and calpain activation. Early gelsolin increase could represent a macrophage response to antagonize apoptosis since gelsolin knockdown increases macrophage susceptibility to GBS-induced apoptosis. This response seems to be GBS specific because macrophage apoptosis by Staurosporine or Cycloeximide does not induce gelsolin.


Subject(s)
Gelsolin/metabolism , Macrophages/immunology , Macrophages/microbiology , Streptococcus agalactiae/immunology , Dose-Response Relationship, Immunologic , Hemolysin Proteins/metabolism , Host-Pathogen Interactions , Macrophages/metabolism
20.
J Bioenerg Biomembr ; 45(6): 519-29, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23979483

ABSTRACT

Group B Streptococcus (GBS) causes severe infection in the central nervous system. In this study, brain mitochondrial function was investigated by simulating infection of isolated mitochondria with GBS, which resulted in loss of mitochondrial activity. The ß-hemolysin expressing strains GBS-III-NEM316 and GBS-III-COH31, but not the gGBS-III-COH31 that does not express ß-hemolysin, caused dissipation of preformed mitochondrial membrane potential (Δψm). This indicates that ß-hemolysin is responsible for decreasing of the reducing power of mitochondria. GBS-III-COH31 interacted with mitochondria causing increase of oxygen consumption, due to uncoupling of respiration, blocking of ATP synthesis, and cytochrome c release outside mitochondria. Moreover, the mitochondrial systems contributing to the control of cellular Ca(2+) uptake were lost. In spite of these alterations, mitochondrial phospholipid content and composition did not change significantly, as evaluated by MALDI-TOF mass spectrometry. However, exogenous cardiolipin (CL) and dipalmitoylphosphatidylcholine (DPPC) attenuated the uncoupling effect of GBS-III-COH31, although with different mechanisms. CL was effective only when fused to the inner mitochondrial membrane, probably reducing the extent of GBS-induced proton leakage. DPPC, which is not able to fuse with mitochondrial membranes, exerted its effect outside mitochondria, likely by shielding mitochondria against GBS ß-hemolysin attack.


Subject(s)
Bacterial Proteins/biosynthesis , Brain/microbiology , Cardiolipins/pharmacology , Hemolysin Proteins/biosynthesis , Mitochondria/drug effects , Mitochondria/microbiology , Phosphatidylcholines/pharmacology , Streptococcus agalactiae/metabolism , Animals , Apoptosis , Cell Respiration/physiology , Mass Spectrometry , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/microbiology , Oxygen Consumption/drug effects , Rats , Streptococcal Infections/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...