Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(50): E11623-E11632, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30463959

ABSTRACT

Hydrogen peroxide (H2O2) is a strong oxidant capable of oxidizing cysteinyl thiolates, yet only a few cysteine-containing proteins have exceptional reactivity toward H2O2 One such example is the prokaryotic transcription factor OxyR, which controls the antioxidant response in bacteria, and which specifically and rapidly reduces H2O2 In this study, we present crystallographic evidence for the H2O2-sensing mechanism and H2O2-dependent structural transition of Corynebacterium glutamicum OxyR by capturing the reduced and H2O2-bound structures of a serine mutant of the peroxidatic cysteine, and the full-length crystal structure of disulfide-bonded oxidized OxyR. In the H2O2-bound structure, we pinpoint the key residues for the peroxidatic reduction of H2O2, and relate this to mutational assays showing that the conserved active-site residues T107 and R278 are critical for effective H2O2 reduction. Furthermore, we propose an allosteric mode of structural change, whereby a localized conformational change arising from H2O2-induced intramolecular disulfide formation drives a structural shift at the dimerization interface of OxyR, leading to overall changes in quaternary structure and an altered DNA-binding topology and affinity at the catalase promoter region. This study provides molecular insights into the overall OxyR transcription mechanism regulated by H2O2.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Corynebacterium glutamicum/metabolism , Hydrogen Peroxide/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Substitution , Bacterial Proteins/genetics , Binding Sites/genetics , Catalase/chemistry , Catalase/genetics , Catalase/metabolism , Corynebacterium glutamicum/genetics , Crystallography, X-Ray , Genes, Bacterial , Kinetics , Mutagenesis, Site-Directed , Oxidation-Reduction , Protein Structure, Quaternary , Transcription Factors/genetics , Transcription, Genetic
2.
J Biol Chem ; 292(32): 13097-13110, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28620052

ABSTRACT

The Mycobacterium tuberculosis rv2466c gene encodes an oxidoreductase enzyme annotated as DsbA. It has a CPWC active-site motif embedded within its thioredoxin fold domain and mediates the activation of the prodrug TP053, a thienopyrimidine derivative that kills both replicating and nonreplicating bacilli. However, its mode of action and actual enzymatic function in M. tuberculosis have remained enigmatic. In this study, we report that Rv2466c is essential for bacterial survival under H2O2 stress. Further, we discovered that Rv2466c lacks oxidase activity; rather, it receives electrons through the mycothiol/mycothione reductase/NADPH pathway to activate TP053, preferentially via a dithiol-disulfide mechanism. We also found that Rv2466c uses a monothiol-disulfide exchange mechanism to reduce S-mycothiolated mixed disulfides and intramolecular disulfides. Genetic, phylogenetic, bioinformatics, structural, and biochemical analyses revealed that Rv2466c is a novel mycothiol-dependent reductase, which represents a mycoredoxin cluster of enzymes within the DsbA family different from the glutaredoxin cluster to which mycoredoxin-1 (Mrx1 or Rv3198A) belongs. To validate this DsbA-mycoredoxin cluster, we also characterized a homologous enzyme of Corynebacterium glutamicum (NCgl2339) and observed that it demycothiolates and reduces a mycothiol arsenate adduct with kinetic properties different from those of Mrx1. In conclusion, our work has uncovered a DsbA-like mycoredoxin that promotes mycobacterial resistance to oxidative stress and reacts with free mycothiol and mycothiolated targets. The characterization of the DsbA-like mycoredoxin cluster reported here now paves the way for correctly classifying similar enzymes from other organisms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Models, Molecular , Mycobacterium tuberculosis/drug effects , Oxidative Stress/drug effects , Prodrugs/pharmacology , Protein Disulfide-Isomerases/metabolism , Pyrimidines/pharmacology , Activation, Metabolic , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Cysteine/metabolism , Disk Diffusion Antimicrobial Tests , Drugs, Investigational/chemistry , Drugs, Investigational/metabolism , Drugs, Investigational/pharmacology , Gene Deletion , Molecular Conformation , Molecular Docking Simulation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/growth & development , Oxidation-Reduction , Phylogeny , Prodrugs/chemistry , Prodrugs/metabolism , Protein Conformation , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/genetics , Pyrimidines/chemistry , Pyrimidines/metabolism , Recombinant Proteins/metabolism , Substrate Specificity
3.
Adv Appl Microbiol ; 99: 103-137, 2017.
Article in English | MEDLINE | ID: mdl-28438267

ABSTRACT

Arsenic (As) is widespread in the environment and highly toxic. It has been released by volcanic and anthropogenic activities and causes serious health problems worldwide. To survive arsenic-rich environments, soil and saprophytic microorganisms have developed molecular detoxification mechanisms to survive arsenic-rich environments, mainly by the enzymatic conversion of inorganic arsenate (AsV) to arsenite (AsIII) by arsenate reductases, which is then extruded by arsenite permeases. One of these Gram-positive bacteria, Corynebacterium glutamicum, the workhorse of biotechnological research, is also resistant to arsenic. To sanitize contaminated soils and waters, C. glutamicum strains were modified to work as arsenic "biocontainers." Two chromosomally encoded ars operons (ars1 and ars2) are responsible for As resistance. The genes within these operons encode for metalloregulatory proteins (ArsR1/R2), arsenite permeases (Acr3-1/-2), and arsenate reductases (ArsC1/C2/C1'). ArsC1/C2 arsenate reductases are coupled to the low molecular weight thiol mycothiol (MSH) and to the recently discovered mycoredoxin-1 (Mrx-1) present in most Actinobacteria. This MSH/Mrx-1 redox system protects cells against different forms of stress, including reactive oxygen species (ROS), metals, and antibiotics. ROS can modify functional sulfur cysteines by oxidizing the thiol (-SH) to a sulfenic acid (-SOH). These oxidation-sensitive protein cysteine thiols are redox regulated by the MSH/Mrx-1 couple in Corynebacterium and Mycobacterium. In summary, the molecular mechanisms involved in arsenic resistance system in C. glutamicum have paved the way for understanding the cellular response against oxidative stress in Actinobacteria.


Subject(s)
Arsenic/metabolism , Corynebacterium glutamicum/metabolism , Arsenic/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Corynebacterium glutamicum/genetics , Gene Expression Regulation, Bacterial , Operon , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...