Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Dermatol ; 159(3): 567-77, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18616783

ABSTRACT

BACKGROUND: Moisturizers are the most commonly used topically applied product for the treatment of dry skin conditions. They affect many properties and functions of the stratum corneum but some moisturizers have been reported to be detrimental to barrier function. Stratum corneum barrier function is a composite of its total structure and thickness but few studies have taken this into account. As a biosensor, the stratum corneum (SC) will change its structure in response to treatment and a swelling effect has been clearly demonstrated by skin hydration. Recently several moisturizing agents have been shown to have an effect on SC swelling behaviour with conflicting results. However, there is a paucity of data reported for measuring the effects of long-term usage of moisturizers on SC thickness in vivo as, until recently, traditional techniques did not have the resolution to measure the effects of moisturizers on nonpalmoplantar body sites. The development of confocal Raman spectroscopy for use in human subjects provides noninvasive, real-time, in vivo measurement of SC water concentration profiles and we have also used this state of the art equipment to measure the effect of the long-term use of moisturizers on SC thickness for the first time. OBJECTIVES: To validate the use of confocal Raman spectroscopy (CRS) to measure SC thickness and then use it to investigate the short- and long-term effects of moisturizers (one of which is known to improve SC barrier function) on SC thickness, water gradients and hydration. METHODS: Two studies were conducted: (i) to validate the use of CRS for measuring SC thickness through comparison with optical coherence tomography (OCT); and (ii) once validated to use CRS to measure the long-term effects of three commercially available moisturizers (A, B, C) on SC thickness and water gradients, together with total hydration, over a 3-week period (2 weeks of treatment and 1 week regression) and compare the spectroscopy-derived hydration value with instrumentally derived capacitance hydration values. RESULTS: (i) A strong, positive correlation in SC thickness was obtained between CRS and OCT (OCT-derived thickness = 0.96 x CRS-derived thickness, r(2) = 0.93; P <0.0001). OCT was shown, however, to have a lower resolution than CRS in distinguishing SC thickness on thinner nonpalmoplantar body sites. Using the CRS method, differences in SC thickness were readily apparent on different body sites (cheek 12.8 +/- 0.9 microm, volar forearm 18.0 +/- 3.9 microm, leg 22.0 +/- 6.9 microm). (ii) Examining the effects of moisturizers in a blinded, randomized 3-week study in human volunteers (n = 14) demonstrated that only one commercially available formulation (A) changed SC water gradients, thickness and hydration as measured by CRS. These hydration data did not directly correlate with capacitance hydration values. CONCLUSIONS: (i) In vivo CRS was validated as a technique to measure SC thickness on both palmoplantar and, particularly, on nonpalmoplantar skin sites. (ii) Moisturizers improve skin moisturization but in this study only formulation A improved SC thickness, water gradients and hydration as measured by CRS. We hypothesize that this was due to compositional differences between the products. We believe that niacinamide (nicotinamide, vitamin B(3)) is probably contributing significantly to this effect, as it has been proven to increase epidermal lipogenesis and SC barrier function in other studies. These results show that by using CRS, we were able for the first time to determine the effect of moisturizer on multiple SC barrier endpoints including SC thickness, and water content as a function of depth and total SC water content.


Subject(s)
Emollients/administration & dosage , Epidermis/drug effects , Microscopy, Confocal/methods , Spectrum Analysis, Raman/methods , Administration, Topical , Adult , Area Under Curve , Body Water/drug effects , Body Water/physiology , Emollients/pharmacology , Epidermis/anatomy & histology , Epidermis/metabolism , Female , Forearm , Humans , Linear Models , Male , Microscopy, Confocal/instrumentation , Middle Aged , Niacinamide/administration & dosage , Niacinamide/pharmacology , Reference Values , Skin Absorption/drug effects , Spectrum Analysis, Raman/instrumentation , Tomography, Optical Coherence/methods
2.
Cell Mol Biol (Noisy-le-grand) ; 44(1): 109-15, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9551643

ABSTRACT

A 64 x 64 mercury-cadmium-telluride focal-plane array detector attached to a Fourier transform infrared microscope was used to spectroscopically image 5 microm sections of canine alveolar bone tissue in the fingerprint region of the infrared spectrum. By ratioing the relative intensities of specific bands across the images, it is possible to obtain spatial distributions of the mineral-to-matrix ratio and mineral maturity as a function of distance from an osteon.


Subject(s)
Cadmium Compounds , Mandible/chemistry , Mercury Compounds , Spectroscopy, Fourier Transform Infrared/methods , Animals , Calcification, Physiologic , Dogs
3.
Anal Chem ; 67(19): 3377-81, 1995 Oct 01.
Article in English | MEDLINE | ID: mdl-8686889

ABSTRACT

A powerful new mid-infrared spectroscopic chemical imaging technique combining step-scan Fourier transform Michelson interferometry with indium antimonide focal-plane array (FPA) image detection is described. The coupling of an infrared focal-plane array detector to an interferometer provides an instrumental multiplex/multichannel advantage. Specifically, the multiple detector elements enable spectra at all pixels to be collected simultaneously, while the interferometer portion of the system allows all the spectral frequencies to be measured concurrently. With this method of mid-infrared spectroscopic imaging, the fidelity of the generated spectral images is limited only by the number of pixels on the FPA detector, and only several seconds of starting time is required for spectral image acquisition. This novel, high-definition technique represents the future of infrared chemical imaging analysis, a new discipline within the chemical and material sciences, which combines the capability of spectroscopy for molecular analysis with the power of visualization. In particular, chemical imaging is broadly applicable for noninvasive, molecular characterization of heterogeneous materials, since all solid-state materials exhibit chemical nonuniformity that exists either by design or by development during the course of material preparation or fabrication. Imaging, employing Raman and infrared spectroscopy, allows the precise characterization of the chemical composition, domain structure, and chemical architecture of a variety of substances. This information is often crucial to a wide range of activities, extending from the fabrication of new materials to a basic understanding of biological samples. In this study, step-scan imaging principles, instrument design details, and infrared chemical imaging results are presented. Since the prospect of performing high-resolution and high-definition mid-infrared chemical imaging very rapidly has been achieved with the step-scan approach, the implications for the chemical analysis of materials are many and varied.


Subject(s)
Image Processing, Computer-Assisted/methods , Spectroscopy, Fourier Transform Infrared/methods , Image Processing, Computer-Assisted/instrumentation , Spectroscopy, Fourier Transform Infrared/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...