Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1101497, 2023.
Article in English | MEDLINE | ID: mdl-37426658

ABSTRACT

CD8+ T cells drive anti-cancer immunity in response to antigen-presenting cells such as dendritic cells and subpopulations of monocytes and macrophages. While CD14+ classical monocytes modulate CD8+ T cell responses, the contributions of CD16+ nonclassical monocytes to this process remain unclear. Herein we explored the role of nonclassical monocytes in CD8+ T cell activation by utilizing E2-deficient (E2-/-) mice that lack nonclassical monocytes. During early metastatic seeding, modeled by B16F10-OVA cancer cells injected into E2-/- mice, we noted lower CD8+ effector memory and effector T cell frequencies within the lungs as well as in lung-draining mediastinal lymph nodes in the E2-/- mice. Analysis of the myeloid compartment revealed that these changes were associated with depletion of MHC-IIloLy6Clo nonclassical monocytes within these tissues, with little change in other monocyte or macrophage populations. Additionally, nonclassical monocytes preferentially trafficked to primary tumor sites in the lungs, rather than to the lung-draining lymph nodes, and did not cross-present antigen to CD8+ T cells. Examination of the lung microenvironment in E2-/- mice revealed reduced CCL21 expression in endothelial cells, which is chemokine involved in T cell trafficking. Our results highlight the previously unappreciated importance of nonclassical monocytes in shaping the tumor microenvironment via CCL21 production and CD8+ T cell recruitment.


Subject(s)
Monocytes , Neoplasms , Mice , Animals , CD8-Positive T-Lymphocytes , Endothelial Cells , Lung , Neoplasms/metabolism , Tumor Microenvironment
2.
Sci Immunol ; 7(73): eabm6931, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35905286

ABSTRACT

Intraepithelial T cells (IETs) are in close contact with intestinal epithelial cells and the underlying basement membrane, and they detect invasive pathogens. How intestinal epithelial cells and basement membrane influence IET survival and function, at steady state or after infection, is unclear. The herpes virus entry mediator (HVEM), a member of the TNF receptor superfamily, is constitutively expressed by intestinal epithelial cells and is important for protection from pathogenic bacteria. Here, we showed that at steady-state LIGHT, an HVEM ligand, binding to epithelial HVEM promoted the survival of small intestine IETs. RNA-seq and addition of HVEM ligands to epithelial organoids indicated that HVEM increased epithelial synthesis of basement membrane proteins, including collagen IV, which bound to ß1 integrins expressed by IETs. Therefore, we proposed that IET survival depended on ß1 integrin binding to collagen IV and showed that ß1 integrin-collagen IV interactions supported IET survival in vitro. Moreover, the absence of ß1 integrin expression by T lymphocytes decreased TCR αß+ IETs in vivo. Intravital microscopy showed that the patrolling movement of IETs was reduced without epithelial HVEM. As likely consequences of decreased number and movement, protective responses to Salmonella enterica were reduced in mice lacking either epithelial HVEM, HVEM ligands, or ß1 integrins. Therefore, IETs, at steady state and after infection, depended on HVEM expressed by epithelial cells for the synthesis of collagen IV by epithelial cells. Collagen IV engaged ß1 integrins on IETs that were important for their maintenance and for their protective function in mucosal immunity.


Subject(s)
Intraepithelial Lymphocytes , Animals , Collagen , Epithelial Cells/metabolism , Integrins/metabolism , Ligands , Mice
3.
Cell Rep ; 38(2): 110209, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021099

ABSTRACT

Innate-like T cells, including invariant natural killer T cells, mucosal-associated invariant T cells, and γδ T cells, are present in various barrier tissues, including the lung, where they carry out protective responses during infections. Here, we investigate their roles during pulmonary pneumococcal infection. Following infection, innate-like T cells rapidly increase in lung tissue, in part through recruitment, but T cell antigen receptor activation and cytokine production occur mostly in interleukin-17-producing NKT17 and γδ T cells. NKT17 cells are preferentially located within lung tissue prior to infection, as are CD103+ dendritic cells, which are important both for antigen presentation to NKT17 cells and γδ T cell activation. Whereas interleukin-17-producing γδ T cells are numerous, granulocyte-macrophage colony-stimulating factor is exclusive to NKT17 cells and is required for optimal protection. These studies demonstrate how particular cellular interactions and responses of functional subsets of innate-like T cells contribute to protection from pathogenic lung infection.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Animals , Cell Line , Dendritic Cells/immunology , Female , Humans , Interferon-gamma/immunology , Interleukin-17/immunology , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Lung/immunology , Lung/microbiology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Streptococcus pneumoniae/immunology
4.
J Immunol ; 208(3): 745-752, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35031577

ABSTRACT

Cystic fibrosis (CF) is an inherited life-threatening disease accompanied by repeated lung infections and multiorgan inflammation that affects tens of thousands of people worldwide. The causative gene, cystic fibrosis transmembrane conductance regulator (CFTR), is mutated in CF patients. CFTR functions in epithelial cells have traditionally been thought to cause the disease symptoms. Recent work has shown an additional defect: monocytes from CF patients show a deficiency in integrin activation and adhesion. Because monocytes play critical roles in controlling infections, defective monocyte function may contribute to CF progression. In this study, we demonstrate that monocytes from CFTRΔF508 mice (CF mice) show defective adhesion under flow. Transplanting CF mice with wild-type (WT) bone marrow after sublethal irradiation replaced most (60-80%) CF monocytes with WT monocytes, significantly improved survival, and reduced inflammation. WT/CF mixed bone marrow chimeras directly demonstrated defective CF monocyte recruitment to the bronchoalveolar lavage and the intestinal lamina propria in vivo. WT mice reconstituted with CF bone marrow also show lethality, suggesting that the CF defect in monocytes is not only necessary but also sufficient to cause disease. We also show that monocyte-specific knockout of CFTR retards weight gains and exacerbates dextran sulfate sodium-induced colitis. Our findings show that providing WT monocytes by bone marrow transfer rescues mortality in CF mice, suggesting that similar approaches may mitigate disease in CF patients.


Subject(s)
Cell Adhesion/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/therapy , Monocytes/immunology , Monocytes/transplantation , Animals , Bone Marrow Transplantation , Bronchoalveolar Lavage Fluid/cytology , Colitis/pathology , Cystic Fibrosis/pathology , Integrins/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Mice , Mice, Inbred C57BL
5.
J Immunother Cancer ; 9(2)2021 02.
Article in English | MEDLINE | ID: mdl-33637602

ABSTRACT

Tumor-associated macrophages (TAMs) are among the main contributors to immune suppression in the tumor microenvironment, however, TAM depletion strategies have yielded little clinical benefit. Here, we discuss the concept that TAMs are also key regulators of anti-PD(L)-1-mediated CD8 T cell-dependent immunity. Emerging data suggest that expression of the chemokine CXCL9 by TAMs regulates the recruitment and positioning of CXCR3-expressing stem-like CD8 T (Tstem) cells that underlie clinical responses to anti-PD(L)-1 treatment. We evaluate clinical and mechanistic studies that establish relationships between CXCL9-expressing TAMs, Tstem and antitumor immunity. Therapies that enhance anti-PD(L)-1 response rates must consider TAM CXCL9 expression. In this perspective, we discuss opportunities to enhance the frequency and function of CXCL9 expressing TAMs and draw on comparative analyzes from infectious disease models to highlight potential functions of these cells beyond Tstem recruitment.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Chemokine CXCL9/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/metabolism , Tumor Escape , Tumor-Associated Macrophages/metabolism , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Receptors, CXCR3/metabolism , Signal Transduction , Tumor Microenvironment , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology
6.
J Leukoc Biol ; 107(6): 883-892, 2020 06.
Article in English | MEDLINE | ID: mdl-32386455

ABSTRACT

Nonclassical monocytes maintain vascular homeostasis by patrolling the vascular endothelium, responding to inflammatory signals, and scavenging cellular debris. Nonclassical monocytes also prevent metastatic tumor cells from seeding new tissues, but whether the patrolling function of nonclassical monocytes is required for this process is unknown. To answer this question, we utilized an inducible-knockout mouse that exhibits loss of the integrin-adaptor protein Kindlin-3 specifically in nonclassical monocytes. We show that Kindlin-3-deficient nonclassical monocytes are unable to patrol the vascular endothelium in either the lungs or periphery. We also find that Kindlin-3-deficient nonclassical monocytes cannot firmly adhere to, and instead "slip" along, the vascular endothelium. Loss of patrolling activity by nonclassical monocytes was phenocopied by ablation of LFA-1, an integrin-binding partner of Kindlin-3. When B16F10 murine melanoma tumor cells were introduced into Kindlin-3-deficient mice, nonclassical monocytes showed defective patrolling towards tumor cells and failure to ingest tumor particles in vivo. Consequently, we observed a significant, 4-fold increase in lung tumor metastases in mice possessing Kindlin-3-deficient nonclassical monocytes. Thus, we conclude that the patrolling function of nonclassical monocytes is mediated by Kindlin-3 and essential for these cells to maintain vascular endothelial homeostasis and prevent tumor metastasis to the lung.


Subject(s)
Cytoskeletal Proteins/genetics , Gene Expression Regulation, Neoplastic , Lymphocyte Function-Associated Antigen-1/genetics , Melanoma, Experimental/genetics , Monocytes/immunology , Phagocytosis , Skin Neoplasms/genetics , Animals , Bone Marrow/immunology , Bone Marrow Transplantation , Cell Adhesion , Cell Communication/immunology , Cytoskeletal Proteins/deficiency , Cytoskeletal Proteins/immunology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Female , Humans , Injections, Intravenous , Lung/blood supply , Lung/immunology , Lung/pathology , Lymphocyte Function-Associated Antigen-1/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/secondary , Mice , Mice, Knockout , Monocytes/pathology , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/pathology , Primary Cell Culture , Signal Transduction , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Whole-Body Irradiation
7.
J Immunol ; 204(1): 192-198, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31767784

ABSTRACT

The role of nonclassical, patrolling monocytes in lung tumor metastasis and their functional relationships with other immune cells remain poorly defined. Contributing to these gaps in knowledge is a lack of cellular specificity in commonly used approaches for depleting nonclassical monocytes. To circumvent these limitations and study the role of patrolling monocytes in melanoma metastasis to lungs, we generated C57BL/6J mice in which the Nr4a1 superenhancer E2 subdomain is ablated (E2 -/- mice). E2 -/- mice lack nonclassical patrolling monocytes but preserve classical monocyte and macrophage numbers and functions. Interestingly, NK cell recruitment and activation were impaired, and metastatic burden was increased in E2 -/-mice. E2 -/- mice displayed unchanged "educated" (CD11b+CD27+) and "terminally differentiated" (CD11b+CD27-) NK cell frequencies. These perturbations were accompanied by reduced expression of stimulatory receptor Ly49D on educated NK cells and increased expression of inhibitory receptor NKG2A/CD94 on terminally differentiated NK cells. Thus, our work demonstrates that patrolling monocytes play a critical role in preventing lung tumor metastasis via NK cell recruitment and activation.


Subject(s)
Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Monocytes/immunology , NK Cell Lectin-Like Receptor Subfamily C/immunology , Animals , Cell Line, Tumor , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
8.
J Vis Exp ; (148)2019 06 19.
Article in English | MEDLINE | ID: mdl-31282876

ABSTRACT

In this article, we present a protocol that is optimized to preserve neutrophil-lineage cells in fresh BM for whole BM CyTOF analysis. We utilized a myeloid-biased 39-antibody CyTOF panel to evaluate the hematopoietic system with a focus on the neutrophil-lineage cells by using this protocol. The CyTOF result was analyzed with an open-resource dimensional reduction algorithm, viSNE, and the data was presented to demonstrate the outcome of this protocol. We have discovered new neutrophil-lineage cell populations based on this protocol. This protocol of fresh whole BM preparation may be used for 1), CyTOF analysis to discover unidentified cell populations from whole BM, 2), investigating whole BM defects for patients with blood disorders such as leukemia, 3), assisting optimization of fluorescence-activated flow cytometry protocols that utilize fresh whole BM.


Subject(s)
Bone Marrow Cells/cytology , Flow Cytometry/methods , Mass Spectrometry/methods , Neutrophils/cytology , Biomarkers/metabolism , Bone Marrow/physiology , Bone Marrow Cells/metabolism , Cell Lineage , Humans , Myeloid Cells/metabolism , Neutrophils/metabolism
9.
Annu Rev Immunol ; 37: 439-456, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026415

ABSTRACT

Monocytes are innate blood cells that maintain vascular homeostasis and are early responders to pathogens in acute infections. There are three well-characterized classes of monocytes: classical (CD14+CD16- in humans and Ly6Chi in mice), intermediate (CD14+CD16+ in humans and Ly6C+Treml4+ in mice), and nonclassical (CD14-CD16+ in humans and Ly6Clo in mice). Classical monocytes are critical for the initial inflammatory response. Classical monocytes can differentiate into macrophages in tissue and can contribute to chronic disease. Nonclassical monocytes have been widely viewed as anti-inflammatory, as they maintain vascular homeostasis. They are a first line of defense in recognition and clearance of pathogens. However, their roles in chronic disease are less clear. They have been shown to be protective as well as positively associated with disease burden. This review focuses on the state of the monocyte biology field and the functions of monocytes, particularly nonclassical monocytes, in health and disease.


Subject(s)
Arthritis, Rheumatoid/immunology , Atherosclerosis/immunology , Blood Vessels/physiology , Monocytes/immunology , Myocardial Infarction/immunology , Animals , Autoimmunity , Hematopoiesis , Homeostasis , Humans , Inflammation , Mice
10.
Arterioscler Thromb Vasc Biol ; 39(1): 25-36, 2019 01.
Article in English | MEDLINE | ID: mdl-30580568

ABSTRACT

Objective- Three distinct human monocyte subsets have been identified based on the surface marker expression of CD14 and CD16. We hypothesized that monocytes were likely more heterogeneous in composition. Approach and Results- We used the high dimensionality of mass cytometry together with the FlowSOM clustering algorithm to accurately identify and define monocyte subsets in blood of healthy human subjects and those with coronary artery disease (CAD). To study the behavior and functionality of the newly defined monocyte subsets, we performed RNA sequencing, transwell migration, and efferocytosis assays. Here, we identify 8 human monocyte subsets based on their surface marker phenotype. We found that 3 of these subsets fall within the CD16+ nonclassical monocyte population and 4 subsets belong to the CD14+ classical monocytes, illustrating significant monocyte heterogeneity in humans. As nonclassical monocytes are important in modulating atherosclerosis in mice, we studied the functions of our 3 newly identified nonclassical monocytes in subjects with CAD. We found a marked expansion of a Slan+CXCR6+ nonclassical monocyte subset in CAD subjects, which was positively correlated with CAD severity. This nonclassical subset can migrate towards CXCL16 and shows an increased efferocytosis capacity, indicating it may play an atheroprotective role. Conclusions- Our data demonstrate that human nonclassical monocytes are a heterogeneous population, existing of several subsets with functional differences. These subsets have changed frequencies in the setting of severe CAD. Understanding how these newly identified subsets modulate CAD will be important for CAD-based therapies that target myeloid cells.


Subject(s)
Flow Cytometry/methods , Monocytes/physiology , Adult , Aged , Aged, 80 and over , Animals , Atherosclerosis/etiology , Cell Movement , Coronary Artery Disease/blood , Coronary Artery Disease/etiology , Humans , Lipopolysaccharide Receptors/analysis , Mice , Middle Aged , Monocytes/immunology , Receptors, IgG/analysis
11.
Cell Rep ; 24(9): 2329-2341.e8, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30157427

ABSTRACT

Neutrophils are short-lived cells that play important roles in both health and disease. Neutrophils and monocytes originate from the granulocyte monocyte progenitor (GMP) in bone marrow; however, unipotent neutrophil progenitors are not well defined. Here, we use cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) methodologies to identify a committed unipotent early-stage neutrophil progenitor (NeP) in adult mouse bone marrow. Importantly, we found a similar unipotent NeP (hNeP) in human bone marrow. Both NeP and hNeP generate only neutrophils. NeP and hNeP both significantly increase tumor growth when transferred into murine cancer models, including a humanized mouse model. hNeP are present in the blood of treatment-naive melanoma patients but not of healthy subjects. hNeP can be readily identified by flow cytometry and could be used as a biomarker for early cancer discovery. Understanding the biology of hNeP should allow the development of new therapeutic targets for neutrophil-related diseases, including cancer.


Subject(s)
Bone Marrow/metabolism , Neutrophils/metabolism , Stem Cells/metabolism , Animals , Humans , Mice
12.
Arterioscler Thromb Vasc Biol ; 37(11): 2043-2052, 2017 11.
Article in English | MEDLINE | ID: mdl-28935758

ABSTRACT

OBJECTIVE: Nonclassical monocytes (NCM) function to maintain vascular homeostasis by crawling or patrolling along the vessel wall. This subset of monocytes responds to viruses, tumor cells, and other pathogens to aid in protection of the host. In this study, we wished to determine how early atherogenesis impacts NCM patrolling in the vasculature. APPROACH AND RESULTS: To study the role of NCM in early atherogenesis, we quantified the patrolling behaviors of NCM in ApoE-/- (apolipoprotein E) and C57BL/6J mice fed a Western diet. Using intravital imaging, we found that NCM from Western diet-fed mice display a 4-fold increase in patrolling activity within large peripheral blood vessels. Both human and mouse NCM preferentially engulfed OxLDL (oxidized low-density lipoprotein) in the vasculature, and we observed that OxLDL selectively induced NCM patrolling in vivo. Induction of patrolling during early atherogenesis required scavenger receptor CD36, as CD36-/- mice revealed a significant reduction in patrolling activity along the femoral vasculature. Mechanistically, we found that CD36-regulated patrolling was mediated by a SFK (src family kinase) through DAP12 (DNAX activating protein of 12KDa) adaptor protein. CONCLUSIONS: Our studies show a novel pathway for induction of NCM patrolling along the vascular wall during early atherogenesis. Mice fed a Western diet showed increased NCM patrolling activity with a concurrent increase in SFK phosphorylation. This patrolling activity was lost in the absence of either CD36 or DAP12. These data suggest that NCM function in an atheroprotective manner through sensing and responding to oxidized lipoprotein moieties via scavenger receptor engagement during early atherogenesis.


Subject(s)
Atherosclerosis/metabolism , CD36 Antigens/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Femoral Artery/metabolism , Leukocyte Rolling , Monocytes/metabolism , Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , CD36 Antigens/deficiency , CD36 Antigens/genetics , Diet, Western , Disease Models, Animal , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Femoral Artery/pathology , Genetic Predisposition to Disease , Humans , Intravital Microscopy , Lipoproteins, LDL/metabolism , Mice, Inbred C57BL , Mice, Knockout , Monocytes/pathology , Phenotype , Signal Transduction , Time Factors , src-Family Kinases/metabolism
13.
Arterioscler Thromb Vasc Biol ; 37(8): 1548-1558, 2017 08.
Article in English | MEDLINE | ID: mdl-28596372

ABSTRACT

OBJECTIVE: Human monocyte subsets are defined as classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16+). Alterations in monocyte subset frequencies are associated with clinical outcomes, including cardiovascular disease, in which circulating intermediate monocytes independently predict cardiovascular events. However, delineating mechanisms of monocyte function is hampered by inconsistent results among studies. APPROACH AND RESULTS: We use cytometry by time-of-flight mass cytometry to profile human monocytes using a panel of 36 cell surface markers. Using the dimensionality reduction approach visual interactive stochastic neighbor embedding (viSNE), we define monocytes by incorporating all cell surface markers simultaneously. Using viSNE, we find that although classical monocytes are defined with high purity using CD14 and CD16, intermediate and nonclassical monocytes defined using CD14 and CD16 alone are frequently contaminated, with average intermediate and nonclassical monocyte purity of ≈86.0% and 87.2%, respectively. To improve the monocyte purity, we devised a new gating scheme that takes advantage of the shared coexpression of cell surface markers on each subset. In addition to CD14 and CD16, CCR2, CD36, HLA-DR, and CD11c are the most informative markers that discriminate among the 3 monocyte populations. Using these additional markers as filters, our revised gating scheme increases the purity of both intermediate and nonclassical monocyte subsets to 98.8% and 99.1%, respectively. We demonstrate the use of this new gating scheme using conventional flow cytometry of peripheral blood mononuclear cells from subjects with cardiovascular disease. CONCLUSIONS: Using cytometry by time-of-flight mass cytometry, we have identified a small panel of surface markers that can significantly improve monocyte subset identification and purity in flow cytometry. Such a revised gating scheme will be useful for clinical studies of monocyte function in human cardiovascular disease.


Subject(s)
Biomarkers/blood , Cell Separation/methods , Coronary Artery Disease/blood , Flow Cytometry/methods , Monocytes/metabolism , Adult , Aged , Aged, 80 and over , CD11c Antigen/blood , CD36 Antigens/blood , Case-Control Studies , Coronary Angiography , Coronary Artery Disease/diagnostic imaging , Female , GPI-Linked Proteins/blood , HLA-DR Antigens/blood , Humans , Lipopolysaccharide Receptors/blood , Male , Middle Aged , Monocytes/classification , Phenotype , Predictive Value of Tests , Receptors, CCR2/blood , Receptors, IgG/blood , Reproducibility of Results
14.
Sci Rep ; 7: 40273, 2017 01 16.
Article in English | MEDLINE | ID: mdl-28091533

ABSTRACT

ABCA7 is an ABC transporter expressed on the plasma membrane, and actively exports phospholipid complexes from the cytoplasmic to the exocytoplasmic leaflet of membranes. Invariant NKT (iNKT) cells are a subpopulation of T lymphocytes that recognize glycolipid antigens in the context of CD1d-mediated antigen presentation. In this study, we demonstrate that ABCA7 regulates the development of NKT cells in a cell-extrinsic manner. We found that in Abca7-/- mice there is reduced expression of CD1d accompanied by an alteration in lipid raft content on the plasma membrane of thymocytes and antigen presenting cells. Together, these alterations caused by absence of ABCA7 negatively affect NKT cell development and function.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Antigens, CD1d/metabolism , Membrane Microdomains/metabolism , Natural Killer T-Cells/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/immunology , Animals , Female , Male , Membrane Microdomains/immunology , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells/immunology
15.
Front Cardiovasc Med ; 4: 80, 2017.
Article in English | MEDLINE | ID: mdl-29312957

ABSTRACT

Non-classical monocytes have emerged as the preeminent vascular housekeepers. Continuous intravascular screening is enabled by slow patrolling on the endothelium and allows a rapid response to local perturbations. Intravital imaging has been crucial to elucidate the molecular mechanisms and migratory phenotype of patrolling. In this review, we discuss technical requirements of intravital microscopy such as imaging modalities, labeling strategies, and data analysis. We further focus on patrolling kinetics and adhesion receptors in different organs and vascular beds including arteries during homeostasis and vascular inflammation and define pertinent questions in the field.

16.
J Clin Invest ; 126(12): 4603-4615, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27820700

ABSTRACT

The transcription factor NR4A3 (also known as NOR-1) is a member of the Nr4a family of nuclear receptors and is expressed in myeloid and lymphoid cells. Here, we have shown that Nr4a3 is essential for the migration of CD103+ dendritic cells (DCs) to lymph nodes (LNs). Nr4a3-deficient mice had very few CD103+ migratory DCs (mDCs) present in LNs, and mixed-chimera studies revealed that this migratory defect was cell intrinsic. We further found that CD103+ DCs from Nr4a3-deficient mice displayed a marked loss of surface expression of the chemokine CCR7. This defect in CCR7 expression was confined to CD103+ DCs, as CCR7 expression on T lymphocytes was unaffected. Moreover, CCR7 was not induced on CD103+ DCs from Nr4a3-deficient mice in response to either administration of the TLR7 agonist R848 or infection with Citrobacter rodentium in vivo. The transcription factor FOXO1 has been shown to regulate CCR7 expression. We found that FOXO1 protein was reduced in Nr4a3-deficient DCs through an AKT-dependent mechanism. Further, we found a requirement for NR4A3 in the maintenance of homeostatic mitochondrial function in CD103+ DCs, although this is likely independent of the NR4A3/FOXO1/CCR7 axis in the regulation of DC migration. Thus, NR4A3 plays an important role in the regulation of CD103+ mDCs by regulating CCR7-dependent cell migration.


Subject(s)
Antigens, CD/immunology , Cell Movement/immunology , DNA-Binding Proteins/immunology , Dendritic Cells/immunology , Integrin alpha Chains/immunology , Nerve Tissue Proteins/immunology , Receptors, Steroid/immunology , Receptors, Thyroid Hormone/immunology , Signal Transduction/immunology , Animals , Antigens, CD/genetics , Cell Movement/drug effects , Cell Movement/genetics , Citrobacter rodentium/immunology , DNA-Binding Proteins/genetics , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/immunology , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/immunology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Imidazoles/pharmacology , Integrin alpha Chains/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Receptors, CCR7/genetics , Receptors, CCR7/immunology , Receptors, Steroid/genetics , Receptors, Thyroid Hormone/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , T-Lymphocytes/immunology
17.
J Exp Med ; 210(6): 1235-49, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23712429

ABSTRACT

Recently identified broadly neutralizing antibodies (bNAbs) that potently neutralize most HIV-1 strains are key to potential antibody-based therapeutic approaches to combat HIV/AIDS in the absence of an effective vaccine. Increasing bNAb potencies and resistance to common routes of HIV-1 escape through mutation would facilitate their use as therapeutics. We previously used structure-based design to create the bNAb NIH45-46(G54W), which exhibits superior potency and/or breadth compared with other bNAbs. We report new, more effective NIH45-46(G54W) variants designed using analyses of the NIH45-46-gp120 complex structure and sequences of NIH45-46(G54W)-resistant HIV-1 strains. One variant, 45-46m2, neutralizes 96% of HIV-1 strains in a cross-clade panel and viruses isolated from an HIV-infected individual that are resistant to all other known bNAbs, making it the single most broad and potent anti-HIV-1 antibody to date. A description of its mechanism is presented based on a 45-46m2-gp120 crystal structure. A second variant, 45-46m7, designed to thwart HIV-1 resistance to NIH45-46(G54W) arising from mutations in a gp120 consensus sequence, targets a common route of HIV-1 escape. In combination, 45-46m2 and 45-46m7 reduce the possible routes for the evolution of fit viral escape mutants in HIV-1YU-2-infected humanized mice, with viremic control exhibited when a third antibody, 10-1074, was added to the combination.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , AIDS Vaccines/genetics , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/genetics , Cell Line , HEK293 Cells , HIV Antibodies/genetics , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV Infections/genetics , HIV-1/genetics , Humans , Mice , Mutation/genetics , Mutation/immunology , Structure-Activity Relationship
18.
Nature ; 492(7427): 118-22, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23103874

ABSTRACT

Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice. Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy, the longer half-life of antibodies led to control of viraemia for an average of 60 days after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in humanized mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , HIV Antibodies/immunology , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibody Specificity/immunology , Disease Models, Animal , HIV Infections/virology , HIV-1/genetics , HIV-1/growth & development , HIV-1/immunology , HIV-1/isolation & purification , Half-Life , Humans , Immunization, Passive , Mice , Mice, Inbred NOD , Time Factors , Viral Load/drug effects
19.
Science ; 334(6060): 1289-93, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22033520

ABSTRACT

Antibodies against the CD4 binding site (CD4bs) on the HIV-1 spike protein gp120 can show exceptional potency and breadth. We determined structures of NIH45-46, a more potent clonal variant of VRC01, alone and bound to gp120. Comparisons with VRC01-gp120 revealed that a four-residue insertion in heavy chain complementarity-determining region 3 (CDRH3) contributed to increased interaction between NIH45-46 and the gp120 inner domain, which correlated with enhanced neutralization. We used structure-based design to create NIH45-46(G54W), a single substitution in CDRH2 that increases contact with the gp120 bridging sheet and improves breadth and potency, critical properties for potential clinical use, by an order of magnitude. Together with the NIH45-46-gp120 structure, these results indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Protein Engineering , AIDS Vaccines , Amino Acid Sequence , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibody Affinity , Binding Sites , CD4 Antigens/chemistry , CD4 Antigens/metabolism , Complementarity Determining Regions , Crystallography, X-Ray , HIV Antibodies/chemistry , HIV Antibodies/metabolism , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/metabolism , Molecular Mimicry , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/immunology , Mutant Proteins/metabolism , Protein Conformation , Protein Structure, Tertiary
20.
Nat Struct Mol Biol ; 17(5): 608-13, 2010 May.
Article in English | MEDLINE | ID: mdl-20357769

ABSTRACT

Strategies to combat HIV-1 require structural knowledge of envelope proteins from viruses in HIV-1 clade C, the most rapidly spreading subtype in the world. We present a crystal structure containing a clade C gp120 envelope. The structure, a complex between gp120, the host receptor CD4 and the CD4-induced antibody 21c, reveals that the 21c epitope involves contacts with gp120, a nonself antigen, and with CD4, an autoantigen. Binding studies using wild-type and mutant CD4 show that 21c Fab binds CD4 in the absence of gp120, and that binding of 21c to clade C and HIV-2 gp120s requires the crystallographically observed 21c-CD4 interaction. Additional binding data suggest a role for the gp120 V1V2 loop in creating a high-affinity, but slow-forming, epitope for 21c after CD4 binds. These results contribute to a molecular understanding of CD4-induced antibodies and provide the first visualization to our knowledge of a potentially autoreactive antibody Fab complexed with both self and nonself antigens.


Subject(s)
Antibodies, Viral/chemistry , Antibodies, Viral/immunology , CD4 Antigens/chemistry , CD4 Antigens/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Cell Line , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , HIV Infections/immunology , HIV-1/chemistry , Humans , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...