Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 458
Filter
4.
Ann Hematol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789590

ABSTRACT

Blinatumomab as a single agent has demonstrated superiority over salvage chemotherapy in patients with relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL), with manageable safety and efficacy. Though known to have anticipated drug toxicities including cytokine release syndrome (CRS) and neurotoxicity, there is only one prior report of macrophage activating syndrome (MAS) due to blinatumomab. Case Presentation: We report the first case of blinatumomab-induced MAS in an adult. The patient presented with fever, cough, and weakness on the second cycle of blinatumomab. Complete blood count was notable for severe leukopenia, with comprehensive metabolic panel notable for elevated alkaline phosphatase, AST, ALT, LDH, and hyperferritinemia consistent with MAS. The patient was already in MRD-negative remission at presentation with MAS. She responded rapidly to withholding the drug and administration of both tocilizumab and dexamethasone. She was able to restart therapy with blinatumomab dosed at 9 mcg/day with no recurrence of symptoms. Though MAS is not an expected association with blinatumomab, the risk for CRS is. Secondary MAS in this case likely shares a mechanism with other hyperinflammatory conditions. Management includes holding the offending agent, like blinatumomab, and administering tocilizumab and dexamethasone. Future research will be needed to predict which patients are at highest risk to develop MAS after similar T-cell therapies.

5.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791222

ABSTRACT

BRAF mutations are rare in myeloid neoplasms and are reported to be associated with poor treatment outcomes. The purpose of our study is to characterize BRAF mutations in myeloid neoplasms using a next-generation sequencing (NGS) panel based on the experiences of a single cancer center. We conducted a retrospective review of patients with myeloid neoplasms who underwent the HopeSeq studies between January 2018 and September 2023. A total of 14 patients with myeloid neoplasms carrying BRAF mutations were included in our cohort. The clinical, pathological, and molecular features of these patients were investigated. Our study indicates that BRAF mutations are rare in myeloid neoplasms, constituting only 0.53% (14/2632) of all myeloid neoplasm cases, with the most common BRAF mutation being BRAF V600E (4/14; 28.6%). Interestingly, we observed that six out of seven patients with acute myeloid leukemia (AML) exhibited AML with monocytic differentiation, and all the patients with AML exhibited an extremely poor prognosis compared to those without BRAF mutations. TET2 (5/14; 35.7%), ASXL1 (4/14; 28.6%), and JAK2 (4/14; 28.6%) were the three most frequently co-mutated genes in these patients. Moreover, we noted concurrent KMT2A gene rearrangement with BRAF mutations in three patients with AML (3/7; 42.9%). Our study suggests that although BRAF mutations are rare in myeloid neoplasms, they play a crucial role in the pathogenesis of specific AML subtypes. Furthermore, RAS pathway alterations, including BRAF mutations, are associated with KMT2A gene rearrangement in AML. However, these findings warrant further validation in larger studies.


Subject(s)
High-Throughput Nucleotide Sequencing , Mutation , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , High-Throughput Nucleotide Sequencing/methods , Female , Male , Middle Aged , Aged , Adult , Leukemia, Myeloid, Acute/genetics , Retrospective Studies , Janus Kinase 2/genetics , Aged, 80 and over , DNA-Binding Proteins/genetics , Dioxygenases , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Prognosis
6.
Am J Hematol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804599

ABSTRACT

Allogeneic hematopoietic cell transplantation (HCT) offers a potential cure in Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL); nonetheless, relapses are common and the major cause of mortality. One strategy to prevent relapse is tyrosine kinase inhibitor (TKI) maintenance post-HCT, but published clinical experience is primarily with the first-generation TKI imatinib while data with newer generation TKIs are limited. We conducted a retrospective analysis of 185 Ph+ ALL patients who underwent HCT followed by TKI maintenance from 2003 to 2021 at City of Hope. Initially, 50 (27.0%) received imatinib, 118 (63.8%) received a second-generation TKI (2G-TKI), and 17 (9.2%) received ponatinib. A total of 77 patients (41.6%) required a dose reduction of their initial TKI due to toxicity. Sixty-six patients (35.7%) did not complete maintenance due to toxicity; 69 patients (37.3%) discontinued 1 TKI, and 11 (5.9%) discontinued 2 TKIs due to toxicity. Initial imatinib versus 2G-TKI versus ponatinib maintenance was discontinued in 19 (38.0%) versus 68 (57.6%) versus 3 (17.6%) patients due to toxicity (p = .003), respectively. Patients on ponatinib as their initial TKI had a longer duration of TKI maintenance versus 2G-TKI: 576.0 days (range, 72-921) versus 254.5 days (range, 3-2740; p = .02). The most common reasons for initial TKI discontinuation include gastrointestinal (GI) intolerance (15.1%), cytopenia (8.6%), and fluid retention (3.8%). The 5-year overall survival and progression-free survival for the total population were 78% and 71%, respectively. Our findings demonstrate the challenges of delivering post-HCT TKI maintenance in a large real-world cohort as toxicities leading to TKI interruptions, discontinuation, and dose reduction were common.

7.
Br J Haematol ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556836

ABSTRACT

Therapy-related acute lymphoblastic leukaemia (tr-ALL) is a disease entity attributed to previous exposure to chemotherapy and/or radiation for antecedent malignancy. There is observed female predominance for tr-ALL, likely due to high prevalence and excellent curable rate for non-metastatic breast cancer as well as the frequent use of carcinogenic agents as part of adjuvant therapy. Here, we reviewed 37 women with diagnosis of ALL following breast cancer treatment with focus on cytogenetic categorization. Philadelphia chromosome positivity (Ph+), KMT2A alterations and other cytogenetic change groups were observed in 32%, 22% and 46% of patients respectively. Median overall survival (OS) and relapse-free survival (RFS) were 19.4 and 12.9 months, overall while both OS and RFS were superior in tr-ALL with Ph+ disease compared to KMT2Ar and other cytogenetics respectively. Seventeen (45.9%) patients underwent consolidative allogeneic haematopoietic cell transplantation (alloHCT) in CR1 out of which 4 (24%) relapsed following transplant. Both OS and RFS were superior in the KMT2Ar cytogenetics group following alloHCT. Ph chromosome represents the largest genetic entity of tr-ALL following breast cancer therapy, and it may be associated with superior survival outcomes while KMT2Ar may be associated with poorer outcomes that can perhaps be mitigated by alloHSCT.

8.
Cancer Genomics Proteomics ; 21(3): 238-251, 2024.
Article in English | MEDLINE | ID: mdl-38670588

ABSTRACT

BACKGROUND/AIM: Dynamic DNA sequences (i.e. sequences capable of forming hairpins, G-quadruplexes, i-motifs, and triple helices) can cause replication stress and associated mutations. One example of such a sequence occurs in the RACK7 gene in human DNA. Since this sequence forms i-motif structures at neutral pH that cause replication stress and result in spontaneous deletions in prostate cancer cells, our initial aim was to determine its potential utility as a biomarker of prostate cancer. MATERIALS AND METHODS: We cloned and sequenced the region in RACK7 where i-motif deletions often occur in DNA obtained from eight individuals. Expressed prostatic secretions were obtained from three individuals with a positive biopsy for prostate cancer and two with individuals with a negative biopsy for prostate cancer. Peripheral blood specimens were obtained from two control healthy bone marrow donors and a marrow specimen was obtained from a third healthy marrow donor. Follow-up computer searches of the genomes of 74 mammalian species available at the NCBI ftp site or frequencies of 6 dynamic sequences known to produce mutations or replication stress using a program written in Mathematica were subsequently performed. RESULTS: Deletions were found in RACK7 in specimens from both older normal adults, as well as specimens from older patients with cancer, but not in the youngest normal adult. The deletions appeared to show a weak trend to increasing frequency with patient age. This suggested that endogenous mutations associated with dynamic sequences might accumulate during aging and might serve as biomarkers of biological age rather than direct biomarkers of cancer. To test that hypothesis, we asked whether or not the genomic frequencies of several dynamic sequences known to produce replication stress or mutations in human DNA were inversely correlated with maximum lifespan in mammals. CONCLUSION: Our results confirm this correlation for six dynamic sequences in 74 mammalian genomes studied, thereby suggesting that spontaneously induced replication stress and mutations linked to dynamic sequence frequency may limit lifespan by limiting genome stability.


Subject(s)
Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Animals , Aged , Middle Aged , Longevity/genetics , Adult , Mammals/genetics , Mutation , Receptors, Cell Surface/genetics
10.
Leukemia ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643304

ABSTRACT

Targeting the metabolic dependencies of acute myeloid leukemia (AML) cells is a promising therapeutical strategy. In particular, the cysteine and methionine metabolism pathway (C/M) is significantly altered in AML cells compared to healthy blood cells. Moreover, methionine has been identified as one of the dominant amino acid dependencies of AML cells. Through RNA-seq, we found that the two nucleoside analogs 8-chloro-adenosine (8CA) and 8-amino-adenosine (8AA) significantly suppress the C/M pathway in AML cells, and methionine-adenosyltransferase-2A (MAT2A) is one of most significantly downregulated genes. Additionally, mass spectrometry analysis revealed that Venetoclax (VEN), a BCL-2 inhibitor recently approved by the FDA for AML treatment, significantly decreases the intracellular level of methionine in AML cells. Based on these findings, we hypothesized that combining 8CA or 8AA with VEN can efficiently target the Methionine-MAT2A-S-adenosyl-methionine (SAM) axis in AML. Our results demonstrate that VEN and 8CA/8AA synergistically decrease the SAM biosynthesis and effectively target AML cells both in vivo and in vitro. These findings suggest the promising potential of combining 8CA/8AA and VEN for AML treatment by inhibiting Methionine-MAT2A-SAM axis and provide a strong rationale for our recently activated clinical trial.

11.
Leuk Lymphoma ; : 1-9, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629176

ABSTRACT

CD123 "expression" is common in hematological malignancies, including acute lymphoblastic leukemia (ALL). Flotetuzumab is a novel, investigational CD3/CD123 DART®. We conducted a phase 1 study evaluating safety and efficacy of flotetuzumab in relapsed/refractory ALL (Cohort A) and other advanced CD123-positive hematological malignancies (excluding myeloid malignancies) (cohort B). Thirteen patients (9 in Cohort A and 4 in Cohort B) were treated at dose level 1 (500 ng/kg/day) before early closure due to discontinuation of drug development by sponsor. Two dose limiting toxicities (Grade 4 thrombocytopenia and neutropenia) occurred in one patient in Cohort B. Cytokine release syndrome occurred in most patients (85%), all being grade ≤2. Responses only occurred in Cohort B, with a partial response in one patient with Hodgkin's lymphoma and morphological complete remission in the bone marrow in one patient with blastic plasmacytoid dendritic cell neoplasm. In conclusion, flotetuzumab had a manageable safety profile in advanced CD123-positive hematological malignancies.

12.
NPJ Syst Biol Appl ; 10(1): 32, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38527998

ABSTRACT

Acute myeloid leukemia (AML) is prevalent in both adult and pediatric patients. Despite advances in patient categorization, the heterogeneity of AML remains a challenge. Recent studies have explored the use of gene expression data to enhance AML diagnosis and prognosis, however, alternative approaches rooted in physics and chemistry may provide another level of insight into AML transformation. Utilizing publicly available databases, we analyze 884 human and mouse blood and bone marrow samples. We employ a personalized medicine strategy, combining state-transition theory and surprisal analysis, to assess the RNA transcriptome of individual patients. The transcriptome is transformed into physical parameters that represent each sample's steady state and the free energy change (FEC) from that steady state, which is the state with the lowest free energy.We found the transcriptome steady state was invariant across normal and AML samples. FEC, representing active molecular processes, varied significantly between samples and was used to create patient-specific barcodes to characterize the biology of the disease. We discovered that AML samples that were in a transition state had the highest FEC. This disease state may be characterized as the most unstable and hence the most therapeutically targetable since a change in free energy is a thermodynamic requirement for disease progression. We also found that distinct sets of ongoing processes may be at the root of otherwise similar clinical phenotypes, implying that our integrated analysis of transcriptome profiles may facilitate a personalized medicine approach to cure AML and restore a steady state in each patient.


Subject(s)
Leukemia, Myeloid, Acute , Transcriptome , Adult , Animals , Mice , Humans , Child , Transcriptome/genetics , Gene Expression Profiling , Leukemia, Myeloid, Acute/genetics , Biomarkers, Tumor/genetics , Phenotype
13.
J Clin Oncol ; 42(15): 1766-1775, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38471061

ABSTRACT

PURPOSE: Allogeneic hematopoietic cell transplantation (HCT) improves outcomes for patients with AML harboring an internal tandem duplication mutation of FLT3 (FLT3-ITD) AML. These patients are routinely treated with a FLT3 inhibitor after HCT, but there is limited evidence to support this. Accordingly, we conducted a randomized trial of post-HCT maintenance with the FLT3 inhibitor gilteritinib (ClinicalTrials.gov identifier: NCT02997202) to determine if all such patients benefit or if detection of measurable residual disease (MRD) could identify those who might benefit. METHODS: Adults with FLT3-ITD AML in first remission underwent HCT and were randomly assigned to placebo or 120 mg once daily gilteritinib for 24 months after HCT. The primary end point was relapse-free survival (RFS). Secondary end points included overall survival (OS) and the effect of MRD pre- and post-HCT on RFS and OS. RESULTS: Three hundred fifty-six participants were randomly assigned post-HCT to receive gilteritinib or placebo. Although RFS was higher in the gilteritinib arm, the difference was not statistically significant (hazard ratio [HR], 0.679 [95% CI, 0.459 to 1.005]; two-sided P = .0518). However, 50.5% of participants had MRD detectable pre- or post-HCT, and, in a prespecified subgroup analysis, gilteritinib was beneficial in this population (HR, 0.515 [95% CI, 0.316 to 0.838]; P = .0065). Those without detectable MRD showed no benefit (HR, 1.213 [95% CI, 0.616 to 2.387]; P = .575). CONCLUSION: Although the overall improvement in RFS was not statistically significant, RFS was higher for participants with detectable FLT3-ITD MRD pre- or post-HCT who received gilteritinib treatment. To our knowledge, these data are among the first to support the effectiveness of MRD-based post-HCT therapy.


Subject(s)
Aniline Compounds , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Mutation , Pyrazines , fms-Like Tyrosine Kinase 3 , Humans , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/mortality , Male , Female , Middle Aged , Pyrazines/therapeutic use , Adult , Aniline Compounds/therapeutic use , Aged , Tandem Repeat Sequences , Young Adult , Neoplasm, Residual , Protein Kinase Inhibitors/therapeutic use , Maintenance Chemotherapy , Gene Duplication
14.
Blood ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38484137

ABSTRACT

Although CD20xCD3 bispecific antibodies are effective against systemic B-cell lymphomas, their efficacy in CNS lymphoma is unknown. Here, we report the CD20xCD3 bispecific, glofitamab, penetrates the blood-brain barrier, stimulates immune-cell infiltration of CNS tumors, and induces responses in CNS lymphoma.

15.
Leukemia ; 38(4): 769-780, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307941

ABSTRACT

Chronic myeloid leukemia (CML) is initiated and maintained by BCR::ABL which is clinically targeted using tyrosine kinase inhibitors (TKIs). TKIs can induce long-term remission but are also not curative. Thus, CML is an ideal system to test our hypothesis that transcriptome-based state-transition models accurately predict cancer evolution and treatment response. We collected time-sequential blood samples from tetracycline-off (Tet-Off) BCR::ABL-inducible transgenic mice and wild-type controls. From the transcriptome, we constructed a CML state-space and a three-well leukemogenic potential landscape. The potential's stable critical points defined observable disease states. Early states were characterized by anti-CML genes opposing leukemia; late states were characterized by pro-CML genes. Genes with expression patterns shaped similarly to the potential landscape were identified as drivers of disease transition. Re-introduction of tetracycline to silence the BCR::ABL gene returned diseased mice transcriptomes to a near healthy state, without reaching it, suggesting parts of the transition are irreversible. TKI only reverted the transcriptome to an intermediate disease state, without approaching a state of health; disease relapse occurred soon after treatment. Using only the earliest time-point as initial conditions, our state-transition models accurately predicted both disease progression and treatment response, supporting this as a potentially valuable approach to time clinical intervention, before phenotypic changes become detectable.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Transcriptome , Mice , Animals , Fusion Proteins, bcr-abl/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Tetracyclines/therapeutic use , Drug Resistance, Neoplasm
16.
Leukemia ; 38(4): 762-768, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378841

ABSTRACT

Molecularly defined secondary acute myeloid leukemia is associated with a prior myeloid neoplasm and confers a worse prognosis. We compared outcomes of molecularly defined secondary AML patients (n = 395) treated with daunorubicin and cytarabine (7 + 3, n = 167), liposomal daunorubicin and cytarabine (CPX-351, n = 66) or hypomethylating agents (HMA) + venetoclax (VEN) (n = 162). Median overall survival (OS) was comparable between treatment groups among patients aged >60 years. In a multivariable model HMA + VEN vs. 7 + 3 was associated with better OS (hazard ratio [HR] 0.64 [95% confidence interval (CI) 0.42-0.98, p = 0.041]), whereas CPX-351 vs. 7 + 3 was not (HR 0.79 [CI 95% 0.50-1.25, p = 0.31]). Allogeneic hematopoietic stem cell transplantation, BCOR and IDH mutations were associated with improved OS; older age, prior myeloid disease, NRAS/KRAS mutations, EZH2 mutation, and monosomal karyotype were associated with worse OS. When analyzed in each treatment separately, the IDH co-mutations benefit was seen with 7 + 3 and the detrimental effect of NRAS/KRAS co-mutations with HMA + VEN and CPX-351. In pairwise comparisons adjusted for age, HMA + VEN was associated with improved OS vs. 7 + 3 in patients with SF3B1 mutation and improved OS vs. CPX-351 in those with RNA splicing factor mutations. In molecularly defined secondary AML treatment with HMA + VEN might be preferred but could further be guided by co-mutations.


Subject(s)
Leukemia, Myeloid, Acute , Neoplasms, Second Primary , Sulfonamides , Humans , Induction Chemotherapy , Proto-Oncogene Proteins p21(ras) , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cytarabine/therapeutic use , Daunorubicin/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Neoplasms, Second Primary/etiology , Retrospective Studies
17.
Blood ; 143(16): 1599-1615, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38394668

ABSTRACT

ABSTRACT: Treatment resistance of leukemia stem cells (LSCs) and suppression of the autologous immune system represent major challenges to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), LSCs are frequently enriched in the CD34posCD38neg blast fraction. Here, we report that interferon gamma (IFN-γ) reduces LSCs clonogenic activity and induces CD38 upregulation in both CD38pos and CD38neg LSC-enriched blasts. IFN-γ-induced CD38 upregulation depends on interferon regulatory factor 1 transcriptional activation of the CD38 promoter. To leverage this observation, we created a novel compact, single-chain CD38-CD3 T-cell engager (BN-CD38) designed to promote an effective immunological synapse between CD38pos AML cells and both CD8pos and CD4pos T cells. We demonstrate that BN-CD38 engages autologous CD4pos and CD8pos T cells and CD38pos AML blasts, leading to T-cell activation and expansion and to the elimination of leukemia cells in an autologous setting. Importantly, BN-CD38 engagement induces the release of high levels of IFN-γ, driving the expression of CD38 on CD34posCD38neg LSC-enriched blasts and their subsequent elimination. Critically, although BN-CD38 showed significant in vivo efficacy across multiple disseminated AML cell lines and patient-derived xenograft models, it did not affect normal hematopoietic stem cell clonogenicity and the development of multilineage human immune cells in CD34pos humanized mice. Taken together, this study provides important insights to target and eliminate AML LSCs.


Subject(s)
Interferon-gamma , Leukemia, Myeloid, Acute , T-Lymphocytes , Animals , Humans , Mice , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/metabolism , Antigens, CD34/metabolism , Cell Line, Tumor , Hematopoietic Stem Cells/metabolism , Interferon-gamma/drug effects , Interferon-gamma/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation/drug effects
18.
Nat Cancer ; 5(4): 601-624, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38413714

ABSTRACT

Current anticancer therapies cannot eliminate all cancer cells, which hijack normal arginine methylation as a means to promote their maintenance via unknown mechanisms. Here we show that targeting protein arginine N-methyltransferase 9 (PRMT9), whose activities are elevated in blasts and leukemia stem cells (LSCs) from patients with acute myeloid leukemia (AML), eliminates disease via cancer-intrinsic mechanisms and cancer-extrinsic type I interferon (IFN)-associated immunity. PRMT9 ablation in AML cells decreased the arginine methylation of regulators of RNA translation and the DNA damage response, suppressing cell survival. Notably, PRMT9 inhibition promoted DNA damage and activated cyclic GMP-AMP synthase, which underlies the type I IFN response. Genetically activating cyclic GMP-AMP synthase in AML cells blocked leukemogenesis. We also report synergy of a PRMT9 inhibitor with anti-programmed cell death protein 1 in eradicating AML. Overall, we conclude that PRMT9 functions in survival and immune evasion of both LSCs and non-LSCs; targeting PRMT9 may represent a potential anticancer strategy.


Subject(s)
Arginine , Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Nucleotidyltransferases , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/metabolism , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Nucleotidyltransferases/metabolism , Arginine/metabolism , Methylation/drug effects , Animals , Mice , Interferon Type I/metabolism , DNA Damage , Cell Line, Tumor , Cell Survival/drug effects
20.
Cell ; 187(3): 624-641.e23, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38211590

ABSTRACT

The therapeutic potential for human type 2 innate lymphoid cells (ILC2s) has been underexplored. Although not observed in mouse ILC2s, we found that human ILC2s secrete granzyme B (GZMB) and directly lyse tumor cells by inducing pyroptosis and/or apoptosis, which is governed by a DNAM-1-CD112/CD155 interaction that inactivates the negative regulator FOXO1. Over time, the high surface density expression of CD155 in acute myeloid leukemia cells impairs the expression of DNAM-1 and GZMB, thus allowing for immune evasion. We describe a reliable platform capable of up to 2,000-fold expansion of human ILC2s within 4 weeks, whose molecular and cellular ILC2 profiles were validated by single-cell RNA sequencing. In both leukemia and solid tumor models, exogenously administered expanded human ILC2s show significant antitumor effects in vivo. Collectively, we demonstrate previously unreported properties of human ILC2s and identify this innate immune cell subset as a member of the cytolytic immune effector cell family.


Subject(s)
Granzymes , Immunity, Innate , Lymphocytes , Neoplasms , Animals , Humans , Mice , Apoptosis , Cytokines , Neoplasms/immunology , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...