Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687953

ABSTRACT

Electrophysiological mapping (EM) using acute electrode probes is a common procedure performed during functional neurosurgery. Due to their constructive specificities, the EM probes are lagging in innovative enhancements. This work addressed complementing a clinically employed EM probe with carbonic and circumferentially segmented macrocontacts that are operable both for neurophysiological sensing ("recording") of local field potentials (LFP) and for test stimulation. This paper illustrates in-depth the development that is based on the direct writing of functional materials. The unconventional fabrication processes were optimized on planar geometry and then transferred to the cylindrically thin probe body. We report and discuss the constructive concept and architecture of the probe, characteristics of the electrochemical interface deduced from voltammetry and chronopotentiometry, and the results of in vitro and in vivo recording and pulse stimulation tests. Two- and three-directional macrocontacts were added on probes having shanks of 550 and 770 µm diameters and 10-23 cm lengths. The graphitic material presents a ~2.7 V wide, almost symmetric water electrolysis window, and an ultra-capacitive charge transfer. When tested with clinically relevant 150 µs biphasic current pulses, the interfacial polarization stayed safely away from the water window for pulse amplitudes up to 9 mA (135 µC/cm2). The in vivo experiments on adult rat models confirmed the high-quality sensing of LFPs. Additionally, the in vivo-prevailing increase in the electrode impedance and overpotential are discussed and modeled by an ionic mobility-reducing spongiform structure; this restricted diffusion model gives new applicative insight into the in vivo-uprisen stimulation overpotential.


Subject(s)
Carbon , Graphite , Animals , Rats , Bandages , Biological Transport , Electrodes
2.
Micromachines (Basel) ; 13(10)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36296024

ABSTRACT

The selective and rapid detection of tumor cells is of critical consequence for the theragnostic field of tumorigenesis; conventional methods, such as histopathological diagnostic methods, often require a long analysis time, excessive analytical costs, complex operations, qualified personnel and deliver many false-positive results. We are considering a new approach of an electrochemical biosensor based on graphene, which is evidenced to be a revolutionary nanomaterial enabling the specific and selective capture of tumor cells. In this paper, we report a biosensor fabricated by growing vertically aligned graphene nanosheets on the conductive surface of interdigitated electrodes which is functionalized with anti-EpCAM antibodies. The dielectric signature of the three types of tumor cells is determined by correlating the values from the Nyquist and Bode diagram: charge transfer resistance, electrical double layer capacity, Debye length, characteristic relaxation times of mobile charges, diffusion/adsorption coefficients, and variation in the electrical permittivity complex and of the phase shift with frequency. These characteristics are strongly dependent on the type of membrane molecules and the electromagnetic resonance frequency. We were able to use the fabricated sensor to differentiate between three types of tumor cell lines, HT-29, SW403 and MCF-7, by dielectric signature. The proposed evaluation method showed the permittivity at 1 MHz to be 3.63 nF for SW403 cells, 4.97 nF for HT 29 cells and 6.9 nF for MCF-7 cells.

3.
Gels ; 8(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36286105

ABSTRACT

The study and discovery of bioactive compounds and new formulations as potential tools for promoting the repair of dermoepidermal tissue in wound healing is of continuing interest. We have developed a new formulation of amorphous hydrogel based on sodium alginate (NaAlg); type I collagen, isolated by the authors from silver carp tails (COL); glycerol (Gli); Aloe vera gel powder (AV); and silver nanoparticles obtained by green synthesis with aqueous Cinnamomum verum extract (AgNPs@CIN) and vitamin C, respectively. The gel texture of the amorphous hydrogels was achieved by the addition of Aloe vera, demonstrated by a rheological analysis. The evaluations of the cytotoxicity and cell proliferation capacity of the experimental amorphous hydrogels were performed against human foreskin fibroblast Hs27 cells (CRL-1634-ATCC). The developed gel formulations did not show a cytotoxic effect. The hydrogel variant containing AgNPs@CIN in a concentration of 8 µg Ag/gel formulation and hydrogel variant with vitamin C had proliferative activity. In addition, the antibacterial activity of the hydrogels was evaluated against S. aureus ATCC 6538, Ps. aeruginosa ATCC 27853, and E. coli ATCC 25922. The results demonstrated that the gel variant based on AgNPs@CIN in a concentration of 95 µg Ag/gel formulation and the hydrogel based on vitamin C show antibacterial activity. Therefore, the developed hydrogels with AgNPs@CIN and vitamin C could be promising alternatives in wound healing.

4.
ACS Comb Sci ; 20(3): 107-126, 2018 03 12.
Article in English | MEDLINE | ID: mdl-29363937

ABSTRACT

Metastasis is the main cause of death in cancer patients worldwide. During metastasis, cancer cells detach from the primary tumor and invade distant tissue. The cells that undergo this process are called circulating tumor cells (CTCs). Studies show that the number of CTCs in the peripheral blood can predict progression-free survival and overall survival and can be informative concerning the efficacy of treatment. Research is now concentrated on developing devices that can detect CTCs in the blood of cancer patients with improved sensitivity and specificity that can lead to improved clinical evaluation. This review focuses on devices that detect and capture CTCs using different cell properties (surface markers, size, deformability, electrical properties, etc.). We also discuss the process of tumor cell dissemination, the biology of CTCs, epithelial-mesenchymal transition (EMT), and several challenges and clinical applications of CTC detection.


Subject(s)
Equipment Design/methods , Microfluidic Analytical Techniques/methods , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/analysis , Electricity , Epithelial-Mesenchymal Transition , Humans , Microfluidic Analytical Techniques/instrumentation , Sensitivity and Specificity , Surface Properties
5.
Langmuir ; 30(44): 13125-36, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25351469

ABSTRACT

This paper presents a microfluidic method for precise control of the size and polydispersity of surfactant-DNA nanoparticles. A mixture of surfactant and DNA dispersed in 35% ethanol is focused between two streams of pure water in a microfluidic channel. As a result, a rapid change of solvent quality takes place in the central stream, and the surfactant-bound DNA molecules undergo a fast coil-globule transition. By adjusting the concentrations of DNA and surfactant, fine-tuning of the nanoparticle size, down to a hydrodynamic diameter of 70 nm with a polydispersity index below 0.2, can be achieved with a good reproducibility.


Subject(s)
DNA/chemistry , Hydrodynamics , Microfluidic Analytical Techniques , Nanoparticles/chemistry , Surface-Active Agents/chemistry , Animals , Bacteriophage lambda/chemistry , Cattle , Particle Size , Phase Transition , Surface Properties
6.
Anal Chem ; 85(12): 5850-6, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23713852

ABSTRACT

Synthesis of surfactant-polyelectrolyte nanoparticles was carried out in a microfluidic device with a fine control over the size and the polydispersity. An anionic polysaccharide (sodium carboxymethylcellulose, CMC) solution was focused using a cationic surfactant (dodecyl trimethylammonium bromide, DTAB) solution in a microfluidic channel at selected ratios of flow rates and reagent concentrations. The methodology ensured a controlled mixing kinetics and a uniform distribution of charges at the mixing interface. The resulting nanoparticles exhibited remarkably well-defined and repeatable size distributions, with hydrodynamic diameters tunable from 50 up to 300 nm and polydispersity index around 0.1 in most cases. Microfluidic-assisted self-assembly may be an efficient way to produce well-controlled polyelectrolyte-based nanoparticles suitable for colloidal science as well as for gene delivery applications.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Hydrodynamics , Microfluidics/methods , Nanoparticles/chemistry , Surface-Active Agents/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...