Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (173)2021 07 14.
Article in English | MEDLINE | ID: mdl-34338671

ABSTRACT

The ability to direct neurons into organized neural networks has great implications for regenerative medicine, tissue engineering, and bio-interfacing. Many studies have aimed at directing neurons using chemical and topographical cues. However, reports of organizational control on a micron-scale over large areas are scarce. Here, an effective method has been described for placing neurons in preset sites and guiding neuronal outgrowth with micron-scale resolution, using magnetic platforms embedded with micro-patterned, magnetic elements. It has been demonstrated that loading neurons with magnetic nanoparticles (MNPs) converts them into sensitive magnetic units that can be influenced by magnetic gradients. Following this approach, a unique magnetic platform has been fabricated on which PC12 cells, a common neuron-like model, were plated and loaded with superparamagnetic nanoparticles. Thin films of ferromagnetic (FM) multilayers with stable perpendicular magnetization were deposited to provide effective attraction forces toward the magnetic patterns. These MNP-loaded PC12 cells, plated and differentiated atop the magnetic platforms, were preferentially attached to the magnetic patterns, and the neurite outgrowth was well aligned with the pattern shape, forming oriented networks. Quantitative characterization methods of the magnetic properties, cellular MNP uptake, cell viability, and statistical analysis of the results are presented. This approach enables the control of neural network formation and improves neuron-to-electrode interface through the manipulation of magnetic forces, which can be an effective tool for in vitro studies of networks and may offer novel therapeutic biointerfacing directions.


Subject(s)
Magnetics , Neurons , Animals , Magnetic Phenomena , Neuronal Outgrowth , PC12 Cells , Rats
2.
Nanomaterials (Basel) ; 8(9)2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30201889

ABSTRACT

Growth factors play an important role in nerve regeneration and repair. An attractive drug delivery strategy, termed "magnetic targeting", aims to enhance therapeutic efficiency by directing magnetic drug carriers specifically to selected cell populations that are suitable for the nervous tissues. Here, we covalently conjugated nerve growth factor to iron oxide nanoparticles (NGF-MNPs) and used controlled magnetic fields to deliver the NGF⁻MNP complexes to target sites. In order to actuate the magnetic fields a modular magnetic device was designed and fabricated. PC12 cells that were plated homogenously in culture were differentiated selectively only in targeted sites out of the entire dish, restricted to areas above the magnetic "hot spots". To examine the ability to guide the NGF-MNPs towards specific targets in vivo, we examined two model systems. First, we injected and directed magnetic carriers within the sciatic nerve. Second, we injected the MNPs intravenously and showed a significant accumulation of MNPs in mouse retina while using an external magnet that was placed next to one of the eyes. We propose a novel approach to deliver drugs selectively to injured sites, thus, to promote an effective repair with minimal systemic side effects, overcoming current challenges in regenerative therapeutics.

3.
ACS Omega ; 3(2): 1897-1903, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-30023817

ABSTRACT

In this work, we describe a low-cost, two-step synthesis of composites of nitrogen-doped carbon quantum dots (NCDs) with γ-Fe2O3 (NCDs/γ-Fe2O3), which is based on a hydrothermal cum co-precipitation method. The product is a fine powder of particles having an average diameter of 9 ± 3 nm. The physical and chemical properties of NCDs/γ-Fe2O3 were studied, as well as the superconducting quantum interference device and Mossbauer analysis of the magnetic properties of these nanocomposites. The interaction of NCDs/γ-Fe2O3 nanocomposites with neuron-like cells was examined, showing efficient uptake and low toxicity. Our research demonstrates the use of the nanocomposites for imaging and for controlling the cellular motility. The NCDs/γ-Fe2O3 nanocomposites are promising because of their biocompatibility, photostability, and potential selective affinity, paving the way for multifunctional biomedical applications.

4.
Adv Healthc Mater ; 6(15)2017 Aug.
Article in English | MEDLINE | ID: mdl-28640544

ABSTRACT

Nerve growth strongly relies on multiple chemical and physical signals throughout development and regeneration. Currently, a cure for injured neuronal tissue is an unmet need. Recent advances in fabrication technologies and materials led to the development of synthetic interfaces for neurons. Such engineered platforms that come in 2D and 3D forms can mimic the native extracellular environment and create a deeper understanding of neuronal growth mechanisms, and ultimately advance the development of potential therapies for neuronal regeneration. This progress report aims to present a comprehensive discussion of this field, focusing on physical feature design and fabrication with additional information about considerations of chemical modifications. We review studies of platforms generated with a range of topographies, from micro-scale features down to topographical elements at the nanoscale that demonstrate effective interactions with neuronal cells. Fabrication methods are discussed as well as their biological outcomes. This report highlights the interplay between neuronal systems and the important roles played by topography on neuronal differentiation, outgrowth, and development. The influence of substrate structures on different neuronal cells and parameters including cell fate, outgrowth, intracellular remodeling, gene expression and activity is discussed. Matching these effects to specific needs may lead to the emergence of clinical solutions for patients suffering from neuronal injuries or brain-machine interface (BMI) applications.


Subject(s)
Biocompatible Materials/chemistry , Biomimetic Materials/chemistry , Mechanotransduction, Cellular/physiology , Neurogenesis/physiology , Neurons/physiology , Tissue Engineering/methods , Animals , Humans , Neurons/cytology , Surface Properties
5.
J Nanobiotechnology ; 14(1): 37, 2016 May 14.
Article in English | MEDLINE | ID: mdl-27179923

ABSTRACT

BACKGROUND: The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells. RESULTS: We found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration. CONCLUSIONS: Applying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations.


Subject(s)
Ferric Compounds/pharmacokinetics , Magnetite Nanoparticles/analysis , Neurons/cytology , Animals , Cell Movement/drug effects , Cell Survival/drug effects , Ferric Compounds/analysis , Ferric Compounds/therapeutic use , Ferric Compounds/toxicity , Magnetic Fields , Magnetics/methods , Magnetite Nanoparticles/therapeutic use , Magnetite Nanoparticles/toxicity , Micromanipulation/methods , Nerve Regeneration/drug effects , Neurons/drug effects , Neurons/physiology , PC12 Cells , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...