Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Biol Direct ; 18(1): 57, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37705059

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is a rare autosomal-recessive neurodegenerative disorder caused by mutations in survival motor neuron 1 (SMN1) gene, and consequent loss of function of SMN protein, which results in progressive loss of lower motor neurons, and muscular wasting. Antisense oligonucleotide (ASO) nusinersen (Spinraza®) modulates the pre-mRNA splicing of the SMN2 gene, allowing rebalance of biologically active SMN. It is administered intrathecally via lumbar puncture after removing an equal amount of cerebrospinal fluid (CSF). Its effect was proven beneficial and approved since 2017 for SMA treatment. Given the direct effect of nusinersen on RNA metabolism, the aim of this project was to evaluate cell-free RNA (cfRNA) in CSF of SMA patients under ASOs treatment for biomarker discovery. METHODS: By RNA-sequencing approach, RNA obtained from CSF of pediatric SMA type 2 and 3 patients was processed after 6 months of nusinersen treatment, at fifth intrathecal injection (T6), and compared to baseline (T0). RESULTS: We observed the deregulation of cfRNAs in patients at T6 and we were able to classify these RNAs into disease specific, treatment specific and treatment dependent. Moreover, we subdivided patients into "homogeneous" and "heterogeneous" according to their gene expression pattern. The "heterogeneous" group showed peculiar activation of genes coding for ribosomal components, meaning that in these patients a different molecular effect of nusinersen is observable, even if this specific molecular response was not referable to a clinical pattern. CONCLUSIONS: This study provides preliminary insights into modulation of gene expression dependent on nusinersen treatment and lays the foundation for biomarkers discovery.


Subject(s)
Muscular Atrophy, Spinal , RNA , Humans , Child , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Oligonucleotides/therapeutic use , Mutation
2.
Braz J Med Biol Res ; 53(11): e9816, 2020.
Article in English | MEDLINE | ID: mdl-33053097

ABSTRACT

Clinical studies show that physical exercise has anxiolytic and pro-cognitive properties for both healthy individuals and psychiatric patients. Most of these data refer to the effects of aerobic exercise. However, other modalities such as resistance exercise deserve more attention because they may also modulate brain function. This study aimed to compare the effects of an aerobic exercise protocol on a treadmill and a resistance exercise protocol on a ladder apparatus on anxiety-like behavior, cognitive flexibility, and neuroplasticity parameters in healthy animals. Adult male Wistar rats were divided into three groups: sedentary control, aerobic training, and resistance training. Subsequently, they were evaluated in the elevated plus-maze (EPM), light-dark box, and modified hole board (mHB) tests. The expressions of synaptophysin and postsynaptic plasticity protein 95 in the dorsal and ventral hippocampus were analyzed by immunofluorescence. The results demonstrated an anxiolytic effect promoted by exercise in the EPM, particularly in the animals submitted to aerobic training, and a mild pro-learning effect of both exercise modalities was observed in the mHB test. All groups showed similar outcomes in the other evaluations. Therefore, the exercise modalities investigated in the present study did not provide considerable modifications to such aspects of the emotional/cognitive functions and neuroplasticity under physiological contexts. Perhaps the two types of exercise acted in neurobiological pathways not analyzed in this study, or the effects may emerge under pathological contexts. These hypotheses should be tested in future studies.


Subject(s)
Physical Conditioning, Animal , Resistance Training , Animals , Anxiety , Cognition , Hippocampus , Male , Neuronal Plasticity , Rats , Rats, Wistar
3.
Braz. j. med. biol. res ; 53(11): e9816, 2020. graf
Article in English | LILACS, Coleciona SUS | ID: biblio-1132487

ABSTRACT

Clinical studies show that physical exercise has anxiolytic and pro-cognitive properties for both healthy individuals and psychiatric patients. Most of these data refer to the effects of aerobic exercise. However, other modalities such as resistance exercise deserve more attention because they may also modulate brain function. This study aimed to compare the effects of an aerobic exercise protocol on a treadmill and a resistance exercise protocol on a ladder apparatus on anxiety-like behavior, cognitive flexibility, and neuroplasticity parameters in healthy animals. Adult male Wistar rats were divided into three groups: sedentary control, aerobic training, and resistance training. Subsequently, they were evaluated in the elevated plus-maze (EPM), light-dark box, and modified hole board (mHB) tests. The expressions of synaptophysin and postsynaptic plasticity protein 95 in the dorsal and ventral hippocampus were analyzed by immunofluorescence. The results demonstrated an anxiolytic effect promoted by exercise in the EPM, particularly in the animals submitted to aerobic training, and a mild pro-learning effect of both exercise modalities was observed in the mHB test. All groups showed similar outcomes in the other evaluations. Therefore, the exercise modalities investigated in the present study did not provide considerable modifications to such aspects of the emotional/cognitive functions and neuroplasticity under physiological contexts. Perhaps the two types of exercise acted in neurobiological pathways not analyzed in this study, or the effects may emerge under pathological contexts. These hypotheses should be tested in future studies.


Subject(s)
Animals , Male , Rats , Physical Conditioning, Animal , Resistance Training , Anxiety , Rats, Wistar , Cognition , Hippocampus , Neuronal Plasticity
4.
J Anat ; 208(5): 565-75, 2006 May.
Article in English | MEDLINE | ID: mdl-16637879

ABSTRACT

The aim of the present study was to describe the ultrastructure of neurons (from eight animals) and to analyse the synaptic terminal distribution (from two animals) in the posterodorsal subnucleus of the medial amygdala (MePD) of adult male rats. Using transmission electron microscopy, it was possible to identify many spiny and aspiny dendrites, unmyelinated axonal bundles, single axonal processes, a few myelinated axons, blood vessels and glial processes in the neuropil. Axodendritic synapses were the most frequently observed (67.5%), appearing to be of either the inhibitory or the excitatory types. The presynaptic region contained round or flattened vesicles that occurred either singly or with dense-cored vesicles (DCVs). The dendrites often received many synapses on a single shaft, and axon terminals displayed synaptic contacts with one or more postsynaptic structures. Dendritic spines showed different morphologies and the synapses on them (23.1%) formed a single and apparently excitatory synaptic contact with round, electron-lucid vesicles alone or, less frequently, with DCVs. Inhibitory and excitatory axosomatic synapses (8.2%) and excitatory axoaxonic synapses (1.2%) were also identified. The present report provides new findings relevant to the study of the MePD cellular organization and could be combined with other morphological data in order to reveal the functional activity of this area in male rats.


Subject(s)
Amygdala/ultrastructure , Neurons/ultrastructure , Presynaptic Terminals/ultrastructure , Animals , Male , Microscopy, Electron , Microtomy , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...