Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Oral Microbiol ; 34(6): 237-244, 2019 12.
Article in English | MEDLINE | ID: mdl-31432617

ABSTRACT

Porphyromonas gingivalis, a keystone pathogen in periodontitis, secretes an array of virulence factors including gingipains via the type IX secretion system (T9SS). Inactivation of any component of the T9SS leads to the accumulation of secreted proteins in unprocessed and, in the case of progingipains, inactive forms in the periplasm. To cast light on the paradox that active gingipains are essential for P. gingivalis fitness in vivo but a functional T9SS is not (Frontiers in Cellular and Infection Microbiology, 2017, 7:378), we have compared virulence of wild-type P. gingivalis W83 and the gingipain-null strain with isogenic mutants deficient in individual T9SS components. Using an in vivo subcutaneous chamber mouse model of infection, gingipain-null strain secretion mutants showed no virulence, but their pathogenic potential was reconstituted by coinfection with a low number of the parental strain. Apparently the same mechanism compensated fitness of mutants lacking functional T9SS the transposon library. In contrast to the parental strain, all mutants elicited significantly lower but an effective inflammatory immune response, which cleared infection and prevented systemic dissemination of P. gingivalis to organs. There were no significant differences in immune responses to different secretion mutants, which were generally more stimulatory than the gingipain-null strain. Together, these results indicate that functional T9SS is essential for P. gingivalis virulence apparently through delivery of active gingipains to the bacterial surface. Therefore, T9SS is a legitimate target for drug development to treat periodontitis.


Subject(s)
Bacterial Secretion Systems , Gingipain Cysteine Endopeptidases/metabolism , Periodontitis , Porphyromonas gingivalis , Adhesins, Bacterial , Animals , Bacterial Secretion Systems/metabolism , Mice , Periodontitis/drug therapy , Periodontitis/microbiology , Porphyromonas gingivalis/pathogenicity , Virulence , Virulence Factors
2.
Sci Adv ; 5(1): eaau3333, 2019 01.
Article in English | MEDLINE | ID: mdl-30746447

ABSTRACT

Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, was identified in the brain of Alzheimer's disease patients. Toxic proteases from the bacterium called gingipains were also identified in the brain of Alzheimer's patients, and levels correlated with tau and ubiquitin pathology. Oral P. gingivalis infection in mice resulted in brain colonization and increased production of Aß1-42, a component of amyloid plaques. Further, gingipains were neurotoxic in vivo and in vitro, exerting detrimental effects on tau, a protein needed for normal neuronal function. To block this neurotoxicity, we designed and synthesized small-molecule inhibitors targeting gingipains. Gingipain inhibition reduced the bacterial load of an established P. gingivalis brain infection, blocked Aß1-42 production, reduced neuroinflammation, and rescued neurons in the hippocampus. These data suggest that gingipain inhibitors could be valuable for treating P. gingivalis brain colonization and neurodegeneration in Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/microbiology , Bacteroidaceae Infections/drug therapy , Brain/microbiology , Brain/pathology , Neuroprotective Agents/therapeutic use , Porphyromonas gingivalis/enzymology , Small Molecule Libraries/therapeutic use , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Bacteroidaceae Infections/microbiology , Cell Line, Tumor , Disease Models, Animal , Female , Gingipain Cysteine Endopeptidases/antagonists & inhibitors , Gingipain Cysteine Endopeptidases/metabolism , Gingipain Cysteine Endopeptidases/pharmacology , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Neuroprotective Agents/pharmacology , Peptide Fragments/metabolism , Pilot Projects , Porphyromonas gingivalis/drug effects , Porphyromonas gingivalis/genetics , Prospective Studies , Saliva/microbiology , Small Molecule Libraries/pharmacology , tau Proteins/metabolism
3.
J Periodontol ; 90(6): 637-646, 2019 06.
Article in English | MEDLINE | ID: mdl-30506795

ABSTRACT

BACKGROUND: Statins effectively reduce risk of cardiovascular-related morbidity and mortality in patients with hyperlipidemia, hypertension, or type 2 diabetes. In addition to lowering cholesterol levels, several studies have attributed statins with immunomodulatory and bactericidal properties. Therefore, the aim of this study was to investigate statins' antimicrobial activity against periodontal homeostasis bacteria. METHODS: Statin effect on bacterial growth was tested using planktonic monocultures and multibacterial biofilms. The latter consisted of five microbial species (Porphyromonas gingivalis, Fusobacterium nucleatum, Actinomyces naeslundii, Tannerella forsythia, and Streptococcus gordonii) associated with dysbiosis of the oral microbiota underlying establishment and perpetuation of periodontitis. RESULTS: All four tested statins efficiently inhibited P. gingivalis growth and significantly decreased the cumulative bacterial load in developing and established biofilms. Simvastatin was most efficient and decreased P. gingivalis counts more than 1,300-fold relative to the control. CONCLUSIONS: These findings suggest that similar effects on bacterial composition of the dental plaque may occur in vivo in patients on statins, thus, leading to a shift of the oral microbiome from a dysbiotic to a more homeostatic one. Simvastatin, being highly effective against P. gingivalis while not affecting commensal microbiota, possesses many properties qualifying it as a potential adjunctive treatment for chronic periodontitis. Further studies are needed to evaluate whether similar effects on bacterial composition of the dental plaque may occur in vivo in patients on statins, thus, leading to a shift of the oral microflora from dysbiotic to a more homeostatic one.


Subject(s)
Diabetes Mellitus, Type 2 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Biofilms , Fusobacterium nucleatum , Humans , Porphyromonas gingivalis , Simvastatin
SELECTION OF CITATIONS
SEARCH DETAIL
...