Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 261: 127059, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35584559

ABSTRACT

The growing interest in low-input agriculture in recent years has focused the use of microbial biofertilizers to improve plant growth and yield through a better mobilization of indigenous source of key nutrients such as nitrogen, phosphorus, potassium etc. In this context, soil microorganisms especially Actinobacteria might play an important role. With their multifunctional activities, they are involved in nutrient cycling, soil quality and crop productivity as well as plant health which make them not only the eco-friendly alternative for agriculture but also for humankind. Bearing this in mind, it is primordial to further explore the special link between these microorganisms and soil -plant ecosystems. Therefore, this review discusses the importance of Actinobacteria as microbial biofertilizers and highlights the future needs and challenges for using them for sustaining crop. The patents and scientific literature analysis from 2000 to 2020 show that 16 patents claiming Actinobacteria as biocontrol or biofertilizer in agriculture and 949 indexed research articles related to Actinobacteria effect on plant growth and phosphate solubilization have been published. Furthermore, Actinobacteria ability to increase growth and yield of staple crops such as wheat maize, tomato, rice, and chickpea plant have been highlighted. Much more effort and progress are expected in the industrial development of actinobacterial bioinoculants as areas such as synthetic biology and nano-biotechnology advance.


Subject(s)
Actinobacteria , Fertilizers , Agriculture , Bacteria , Crops, Agricultural , Ecosystem , Fertilizers/microbiology , Soil , Soil Microbiology
2.
J Agric Food Chem ; 69(45): 13270-13285, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-33929839

ABSTRACT

New technologies that enhance soil biodiversity and minimize the use of scarce resources while boosting crop production are highly sought to mitigate the increasing threats that climate change, population growth, and desertification pose on the food infrastructure. In particular, solutions based on plant-growth-promoting bacteria (PGPB) bring merits of self-replication, low environmental impact, tolerance to biotic and abiotic stressors, and reduction of inputs, such as fertilizers. However, challenges in facilitating PGPB delivery in the soil still persist and include survival to desiccation, precise delivery, programmable resuscitation, competition with the indigenous rhizosphere, and soil structure. These factors play a critical role in microbial root association and development of a beneficial plant microbiome. Engineering the seed microenvironment with protein and polysaccharides is one proposed way to deliver PGPB precisely and effectively in the seed spermosphere. In this review, we will cover new advancements in the precise and scalable delivery of microbial inoculants, also highlighting the latest development of multifunctional rhizobacteria solutions that have beneficial impact on not only legumes but also cereals. To conclude, we will discuss the role that legislators and policymakers play in promoting the adoption of new technologies that can enhance the sustainability of crop production.


Subject(s)
Agricultural Inoculants , Soil Microbiology , Plant Development , Plant Roots , Plants , Rhizosphere
3.
Microorganisms ; 9(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668691

ABSTRACT

Soil fertility and plant nutrition require an adequate management of essential macronutrients such as potassium (K) and phosphorus (P), which are mandatory for plant development. Bioleaching of K and P bearing minerals improves their chemical weathering and increases the performance of the biofertilization strategies. In this study, in vitro and greenhouse experiments were carried out to investigate P and K solubilization traits of nine Actinobacteria (P13, P14, P15, P16, P17, P18, BC3, BC10, and BC11) under fertilization with rock phosphate (RP). K and P solubilization were evaluated on Alexandrov and NBRIP media containing mica and six RP samples, respectively. The actinobacterial strains were able to solubilize K in Alexandrov medium supplemented with RP. However, when soluble P was used instead of RP, only four strains of Actinobacteria (Streptomyces alboviridis P18-Streptomyces griseorubens BC3-Streptomyces griseorubens BC10 and Nocardiopsis alba BC11) solubilized K. The solubilization values of K ranged from 2.6 to 41.45 mg/L while those of P varied from 0.1 to 32 mg/L. Moreover, all strains were able to produce IAA, siderophore, HCN, and ammonia and significantly improved the germination rate and the vigor index of wheat. The pot experiments revealed that four strains (Streptomyces alboviridis P18, Streptomyces griseorubens BC3, Streptomyces griseorubens BC10, and Nocardiopsis alba BC11) significantly improved the growth parameters of wheat, namely root length (1.75-23.84%), root volume (41.57-71.46%), root dry weight (46.89-162.41%), shoot length (8.92-23.56%), and shoot dry weight (2.56-65.68%) compared to the uninoculated control. These findings showed that Streptomyces griseorubens BC10 and Nocardiopsis alba BC11 are promising candidates for the implementation of efficient biofertilization strategies to improve soil fertility and plant yield under rock P and rock K fertilization.

4.
Curr Microbiol ; 62(2): 479-85, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20717676

ABSTRACT

Strain 3D, isolated from fermented traditional Moroccan dairy product, and identified as Enterococcus faecium, was studied for its capability to produce two bacteriocins acting against Listeria monocytogenes. Bacteriocins 3 Da and 3Db were heat stable inactivated by proteinase K, pepsin, and trypsin but not when treated with catalase. The evidenced bacteriocins were stable in a wide pH range from 2 to 11 and bactericidal activity was kept during storage at 4°C. However, the combination of temperature and pH exhibited a stability of the bacteriocins. RP-HPLC purification of the anti-microbial compounds shows two active fractions eluted at 16 and 30.5 min, respectively. Mass spectrometry analysis showed that E. faecium 3D produce two bacteriocins Enterocin 3 Da (3893.080 Da) and Enterocin 3Db (4203.350 Da). This strain is food-grade organism and its bacteriocins were heat-stable peptides at basic, neutral, and acid pH: such bacteriocins may be of interest as food preservatives.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Bacteriocins/biosynthesis , Bacteriocins/pharmacology , Enterococcus faecium/metabolism , Listeria monocytogenes/drug effects , Bacteriocins/chemistry , Chromatography, High Pressure Liquid , Enterococcus faecium/isolation & purification , Food Microbiology , Humans , Hydrogen-Ion Concentration , Mass Spectrometry , Microbial Viability/drug effects , Molecular Weight , Protein Stability , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...