Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Drug Resist ; 4(1): 96-124, 2021.
Article in English | MEDLINE | ID: mdl-35582006

ABSTRACT

Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.

2.
Am J Physiol Heart Circ Physiol ; 318(4): H801-H815, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32057252

ABSTRACT

DNA damage accrued in induced pluripotent stem cell (iPSC)-derived cardiomyocytes during in vitro culture practices lessens their therapeutic potential. We determined whether DNA-damage-free iPSCs (DdF-iPSCs) can be selected using stabilization of p53, a transcription factor that promotes apoptosis in DNA-damaged cells, and differentiated them into functionally competent DdF cardiomyocytes (DdF-CMs). p53 was activated using Nutlin-3a in iPSCs to selectively kill the DNA-damaged cells, and the stable DdF cells were cultured further and differentiated into CMs. Both DdF-iPSCs and DdF-CMs were then characterized. We observed a significant decrease in the expression of reactive oxygen species and DNA damage in DdF-iPSCs compared with control (Ctrl) iPSCs. Next-generation RNA sequencing and Ingenuity Pathway Analysis revealed improved molecular, cellular, and physiological functions in DdF-iPSCs. The differentiated DdF-CMs had a compact beating frequency between 40 and 60 beats/min accompanied by increased cell surface area. Additionally, DdF-CMs were able to retain the improved molecular, cellular, and physiological functions after differentiation from iPSCs, and, interestingly, cardiac development network was prominent compared with Ctrl-CMs. Enhanced expression of various ion channel transcripts in DdF-CMs implies DdF-CMs are of ventricular CMs and mature compared with their counterparts. Our results indicated that DdF-iPSCs could be selected through p53 stabilization using a small-molecule inhibitor and differentiated into ventricular DdF-CMs with fine-tuned molecular signatures. These iPSC-derived DdF-CMs show immense clinical potential in repairing injured myocardium.NEW & NOTEWORTHY Culture-stress-induced DNA damage in stem cells lessens their performance. A robust small-molecule-based approach, by stabilizing/activating p53, to select functionally competent DNA-damage-free cells from a heterogeneous population of cells is demonstrated. This protocol can be adopted by clinics to select DNA-damage-free cells before transplanting them to the host myocardium. The intact DNA-damage-free cells exhibited with fine-tuned molecular signatures and improved cellular functions. DNA-damage-free cardiomyocytes compared with control expressed superior cardiomyocyte functional properties, including, but not limited to, enhanced ion channel signatures. These DNA-intact cells would better engraft, survive, and, importantly, improve the cardiac function of the injured myocardium.


Subject(s)
Cell Differentiation , DNA Damage , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Cells, Cultured , Cellular Reprogramming Techniques/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Myocardial Contraction , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
J Vis Exp ; (143)2019 01 25.
Article in English | MEDLINE | ID: mdl-30735199

ABSTRACT

Stem and stem-cell-derived cells have immense potential as a regenerative therapy for various degenerative diseases. DNA is the storehouse of genetic data in all cells, including stem cells, and its integrity is fundamental to its regenerative ability. Stem cells undergo rapid propagation in labs to achieve the necessary numbers for transplantation. Accelerated cell growth leads to the loss of DNA integrity by accumulated metabolites, such as reactive oxygen, carbonyl, and alkylating agents. Transplanting these cells would result in poor engraftment and regeneration of the deteriorating organ. Moreover, transplanting DNA-damaged cells leads to mutations, DNA instability, cellular senescence, and possibly, life-threatening diseases such as cancer. Therefore, there is an immediate need for a quality control method to evaluate the cell's suitability for transplantation. Here, we provide step-by-step protocols for the assessment of the DNA integrity of stem cells prior to cell transplantation.


Subject(s)
Cell- and Tissue-Based Therapy/methods , DNA Damage , DNA/chemistry , Heart Diseases/therapy , Myocytes, Cardiac/cytology , Stem Cell Transplantation/standards , Stem Cells/cytology , Cell Proliferation , Cellular Senescence , DNA/analysis , DNA/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...