Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 151: 609-617, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32061700

ABSTRACT

ß-Glucosidases (BGL) are key members of the cellulase enzyme complex that determine efficiency of lignocellulosic biomass degradation, which have shown great functional importance to many biotechnological systems. A previous reported BGL from Neosartorya fischeri (NfBGL) showed much higher activity than other BGLs. Screening the important residues based on sequence alignment, analyzing a homology model, and subsequent alteration of individually screened residues by site-directed mutagenesis were carried out to investigate the molecular determinants of the enzyme's high catalytic efficiency. Tyr320, located in the wild-type NfBGL substrate-binding pocket was identified as crucial to the catalytic function of NfBGL. The replacement of Tyr320 with aromatic amino acids did not significantly alter the catalytic efficiency towards p-nitrophenyl ß-d-glucopyranoside (pNPG). However, mutants with charged and hydrophilic amino acids showed almost no activity towards pNPG. Computational studies suggested that an aromatic acid is required at position 320 in NfBGL to stabilize the enzyme-substrate complex formation. This knowledge on the mechanism of action of the molecular determinants can also help rational protein engineering of BGLs.


Subject(s)
Aspergillus/enzymology , Tyrosine/chemistry , beta-Glucosidase/chemistry , Amino Acid Sequence , Aspergillus/genetics , Catalysis , Catalytic Domain , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Recombinant Proteins , Structure-Activity Relationship , Substrate Specificity , beta-Glucosidase/genetics , beta-Glucosidase/isolation & purification
2.
Indian J Microbiol ; 59(3): 370-374, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31388216

ABSTRACT

Immobilization of enzymes through metal-based system is demonstrated as a promising approach to enhance its properties. In this study, the influence of metals ions, including copper, cobalt and zinc (Zn) on the immobilization of ß-glucosidase (BGL) through the synthesis of protein-inorganic hybrid was evaluated at 4 °C. Among these metal ions-based hybrids, Zn showed the highest encapsulation yield and relative activity of 87.5 and 207%, respectively. Immobilized BGL exhibited higher pH and temperature stability compared to free form. Thermal stability of hybrid improved up to 26-fold at 60 °C. After 10 cycles of reuse, immobilized enzyme retained 93.8% of residual activity. These results suggested that metal ions played a significant role in the enzyme immobilization as a protein-inorganic hybrid. Overall, this strategy can be potentially applied to enhance the properties of enzymes though effective encapsulation for the broad biotechnological applications.

3.
Bioresour Technol ; 263: 25-32, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29729538

ABSTRACT

In the present study, co-cultures of the methanotrophs Methylocella tundrae, Methyloferula stellata, and Methylomonas methanica were evaluated for improving methanol production with their application. Among the different combinations, the co-culture of M. tundrae and M. methanica increased methanol production to 4.87 mM using methane (CH4) as feed. When simulated biogas mixtures were used as feed, the maximum methanol production was improved to 8.66, 8.45, and 9.65 mM by free and encapsulated co-cultures in 2% alginate and silica-gel, respectively. Under repeated batch conditions, free and immobilized co-cultures using alginate and silica-gel resulted in high cumulative production, up to 24.43, 35.95, and 47.35 mM, using simulated biohythane (CH4 and hydrogen), respectively. This is the first report of methanol production from defined free and immobilized co-cultures using simulated biogas mixtures as feed.


Subject(s)
Biofuels , Methanol , Methylomonas , Hydrogen , Methane
4.
Sci Rep ; 7(1): 15333, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127386

ABSTRACT

A major challenge in the industrial use of enzymes is maintaining their stability at elevated temperatures and in harsh organic solvents. In order to address this issue, we investigated the use of nanotubes as a support material for the immobilization and stabilization of enzymes in this work. SnO2 hollow nanotubes with a high surface area were synthesized by electrospinning the SnCl2 precursor and polyvinylpyrrolidone (dissolved in dimethyl formamide and ethanol). The electrospun product was used for the covalent immobilization of enzymes such as lipase, horseradish peroxidase, and glucose oxidase. The use of SnO2 hollow nanotubes as a support was promising for all immobilized enzymes, with lipase having the highest protein loading value of 217 mg/g, immobilization yield of 93%, and immobilization efficiency of 89%. The immobilized enzymes were fully characterized by various analytical methods. The covalently bonded lipase showed a half-life value of 4.5 h at 70 °C and retained ~91% of its original activity even after 10 repetitive cycles of use. Thus, the SnO2 hollow nanotubes with their high surface area are promising as a support material for the immobilization of enzymes, leading to improved thermal stability and a higher residual activity of the immobilized enzyme under harsh solvent conditions, as compared to the free enzyme.


Subject(s)
Ascomycota/enzymology , Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Glucose Oxidase/chemistry , Lipase/chemistry , Nanotubes/chemistry , Tin Compounds/chemistry , Enzyme Stability , Horseradish Peroxidase/chemistry
5.
Bioresour Technol ; 218: 202-8, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27371792

ABSTRACT

Raw biogas can be an alternative feedstock to pure methane (CH4) for methanol production. In this investigation, we evaluated the methanol production potential of Methylosinus sporium from raw biogas originated from an anaerobic digester. Furthermore, the roles of different gases in methanol production were investigated using synthetic gas mixtures of CH4, carbon dioxide (CO2), and hydrogen (H2). Maximum methanol production was 5.13, 4.35, 6.28, 7.16, 0.38, and 0.36mM from raw biogas, CH4:CO2, CH4:H2, CH4:CO2:H2, CO2, and CO2:H2, respectively. Supplementation of H2 into raw biogas increased methanol production up to 3.5-fold. Additionally, covalent immobilization of M. sporium on chitosan resulted in higher methanol production from raw biogas. This study provides a suitable approach to improve methanol production using low cost raw biogas as a feed containing high concentrations of H2S (0.13%). To our knowledge, this is the first report on methanol production from raw biogas, using immobilized cells of methanotrophs.


Subject(s)
Carbon Dioxide/chemistry , Hydrogen/chemistry , Methane/chemistry , Methanol/chemistry , Anaerobiosis , Biofuels , Biotechnology , Gases , Methylosinus
6.
J Microbiol Biotechnol ; 26(7): 1234-41, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27012239

ABSTRACT

Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.


Subject(s)
Alphaproteobacteria/metabolism , Biocatalysis , Cells, Immobilized/metabolism , Methane/metabolism , Methanol/metabolism , Fermentation
7.
J Microbiol Biotechnol ; 26(4): 717-24, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-26838340

ABSTRACT

Methane (CH4) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH4 can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH4; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl2 as a methanol dehydrogenase inhibitor, 50% CH4 concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH4.


Subject(s)
Biological Products , Methanol/metabolism , Methylocystaceae/metabolism , Soil Microbiology , Culture Media/chemistry , Formates/pharmacology , Industrial Microbiology , Methylocystaceae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...