Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(5): 1736-1751, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38303928

ABSTRACT

The controlled delocalization of molecular excitons remains an important goal towards the application of organic chromophores in processes ranging from light-initiated chemical transformations to classical and quantum information processing. In this study, we present a methodology to couple optical and magnetic spectroscopic techniques and assess the delocalization of singlet and triplet excitons in model molecular chromophores. By comparing the steady-state and time-resolved optical spectra of Zn-porphyrin monomers and weakly coupled dimers, we show that we can use the identity of substituents bound at specific positions of the macromolecules' rings to control the inter-ring delocalization of singlet excitons stemming from their B states through acetylene bridges. While broadened steady-state absorption spectra suggest the presence of delocalized B state excitons in mesityl-substituted Zn-tetraphenyl porphyrin dimers (Zn2U-D), we confirm this conclusion by measuring an enhanced ultrafast non-radiative relaxation from these inter-ring excitonic states to lower lying electronic states relative to their monomer. In contrast to the delocalized nature of singlet excitons, we use time-resolved EPR and ENDOR spectroscopies to show that the triplet states of the Zn-porphyrin dimers remain localized on one of the two macrocyclic sub-units. We use the analysis of EPR and ENDOR measurements on unmetallated model porphyrin monomers and dimers to support this conclusion. The results of DFT calculations also support the interpretation of localized triplet states. These results demonstrate researchers cannot conclude triplet excitons delocalize in macromolecular based on the presence of spatially extended singlet excitons, which can help in the design of chromophores for application in spin conversion and information processing technologies.

2.
Appl Magn Reson ; 51(9-10): 977-991, 2020 Oct.
Article in English | MEDLINE | ID: mdl-34764625

ABSTRACT

EPR spectroscopy is an important spectroscopic method for identification and characterization of radical species involved in many biological reactions. The tyrosyl radical is one of the most studied amino acid radical intermediates in biology. Often in conjunction with histidine residues, it is involved in many fundamental biological electron and proton transfer processes, such as in the water oxidation in photosystem II. As biological processes are typically extremely complicated and hard to control, molecular bio-mimetic model complexes are often used to clarify the mechanisms of the biological reactions. Here we present theoretical calculations to investigate the sensitivity of magnetic resonance parameters to proton-coupled electron transfer events, as well as conformational substates of the molecular constructs which mimic the tyrosine-histidine (Tyr-His) pairs found in a large variety of proteins. Upon oxidation of the phenol, the Tyr analogue, these complexes can perform not only one-electron one-proton transfer (EPT), but also one-electron two-proton transfers (E2PT). It is shown that in aprotic environment the gX-components of the electronic g-tensor are extremely sensitive to the first proton transfer from the phenoxyl oxygen to the imidazole nitrogen (EPT product), leading to a significant increase of the gX-value of up to 0.003, but are not sensitive to the second proton transfer (E2PT product). In the latter case the change of the gX-value is much smaller (ca. 0.0001), which is too small to be distinguished even by high frequency EPR. The 14N hyperfine values are also too similar to allow differentiation between the different protonation states in EPT and E2PT. The magnetic resonance parameters were also calculated as a function of the rotation angles around single bonds. It was demonstrated that rotation of the phenoxyl group results in large positive changes (>0.001) in the gX-values. Analysis of the data reveals that the main source of these changes is related to the strength of the H-bond between phenoxyl oxygen and the proton(s) on N1 and N2 positions of the imidazole.

3.
J Am Chem Soc ; 142(3): 1359-1366, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31860294

ABSTRACT

A key characteristic of organic photovoltaic cells is the efficient charge separation in the active layer. Sufficient delocalization of the positive polaron in organic photovoltaics is considered essential for the effective separation of the opposite charges and the suppression of recombination. We use light-induced EPR and ENDOR spectroscopy combined with DFT calculations to determine the electronic structure of the positive polaron in PTB7-type oligomers. Utilizing the superior spectral resolution of high-frequency (130 GHz) D-band EPR, the principal components of the g tensors were determined. Pulsed ENDOR spectroscopy at X-band allowed the measurement of 1H hyperfine coupling constants. A comparison of g tensors and 1H hyperfine coupling constants of the PTB7-type oligomers with the high-performance PTB7 polymer revealed a delocalization of the positive polaron in the polymer over about four monomeric units, corresponding to about 45 Å in length. Our current study thus not only determines the polaron delocalization length in PTB7 but also validates the approach combining EPR/ENDOR spectroscopy with DFT-calculated magnetic resonance parameters. This is of importance in those cases where oligomers of defined length are not easily obtained. In addition, the delocalization of the neutral triplet exciton was also determined in the oligomers and compared with polymer PTB7. The analysis revealed that the neutral triplet exciton is substantially more delocalized than the positive polaron, exceeding 10 monomeric units.

4.
J Phys Chem Lett ; 9(14): 3915-3921, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-29969036

ABSTRACT

Fullerenes attract much attention in various scientific fields, but their electronic properties are still not completely understood. Here we report on a combined EPR and DFT study of the fullerene anion C60- in solid glassy environment. DFT calculations were used to characterize its electronic structure through spin density distribution and magnetic resonance parameters. The electron spin density is not uniformly distributed throughout the C60- cage but shows a pattern similar to PC61BM-. EPR spectroscopy reveals a rhombic g-tensor sensitive to the environment in the frozen glassy solutions, which can be rationalized by deformation of the fullerenes along low-frequency vibrational modes upon cooling. DFT modeling confirms that these deformations lead to variation in the C60- g values. The decrease in g-tensor anisotropy with sample annealing is related to the lessening of g-tensor strain upon temperature relaxation of the most distorted sites in the glassy state.

5.
J Phys Chem C Nanomater Interfaces ; 121(41): 22707-22719, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29606993

ABSTRACT

Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh2)2, DTS(F2BTTh2)2, DTS(PTTh2)2, DTG(FBTTh2)2 and DTG(F2BTTh2)2) with the fullerene derivative PC61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh2)2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh2)2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh2)2 blend is in accordance with the slower charge separation dynamics observed in this blend.

6.
J Phys Chem Lett ; 6(23): 4730-5, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26569578

ABSTRACT

Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Fullerenes/chemistry , Electronics , Molecular Structure
7.
Inorg Chem ; 54(13): 6226-34, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26098955

ABSTRACT

The Ni(I) hydrogen oxidation catalyst [Ni(P(Cy)2N(tBu)2)2](+) (1(+); P(Cy)2N(tBu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane) has been studied using a combination of electron paramagnetic resonance (EPR) techniques (X-, Q-, and D-band, electron-nuclear double resonance, hyperfine sublevel correlation spectroscopy), X-ray crystallography, and density functional theory (DFT) calculations. Crystallographic and DFT studies indicate that the molecular structure of 1(+) is highly symmetrical. EPR spectroscopy has allowed determination of the electronic g tensor and the spin density distribution on the ligands, and revealed that the Ni(I) center does not interact strongly with the potentially coordinating solvents acetonitrile and butyronitrile. The EPR spectra and magnetic parameters of 1(+) are found to be distinctly different from those for the related compound [Ni(P(Ph)2N(Ph)2)2](+) (4(+)). One significant contributor to these differences is that the molecular structure of 4(+) is unsymmetrical, unlike that of 1(+). DFT calculations on derivatives in which the R and R' groups are systematically varied have allowed elucidation of structure/substituent relationships and their corresponding influence on the magnetic resonance parameters.


Subject(s)
Hydrogen/chemistry , Models, Molecular , Nickel/chemistry , Phosphorus/chemistry , Catalysis , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Quantum Theory
8.
Phys Chem Chem Phys ; 15(24): 9562-74, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23670645

ABSTRACT

The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Upon illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P(+), and negative, P(-), polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of (1)H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40-60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units for PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong delocalization of the positive polaron on the polymer donor is an important reason for the efficient charge separation in bulk heterojunction systems as it minimizes the wasteful process of charge recombination. The combination of advanced EPR spectroscopy and DFT is a powerful approach for investigation of light-induced charge dynamics in organic photovoltaic materials.


Subject(s)
Fullerenes/chemistry , Polymers/chemistry , Electron Spin Resonance Spectroscopy , Gene Conversion , Organoselenium Compounds/chemistry , Solar Energy
9.
J Phys Chem B ; 116(9): 2943-57, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22375846

ABSTRACT

Solar fuels research aims to mimic photosynthesis and devise integrated systems that can capture, convert, and store solar energy in the form of high-energy molecular bonds. Molecular hydrogen is generally considered an ideal solar fuel because its combustion is essentially pollution-free. Cobaloximes rank among the most promising earth-abundant catalysts for the reduction of protons to molecular hydrogen. We have used multifrequency EPR spectroscopy at X-band, Q-band, and D-band combined with DFT calculations to reveal electronic structure and establish correlations among the structure, surroundings, and catalytic activity of these complexes. To assess the strength and nature of ligand cobalt interactions, the BF(2)-capped cobaloxime, Co(dmgBF(2))(2), was studied in a variety of different solvents with a range of polarities and stoichiometric amounts of potential ligands to the cobalt ion. This allows the differentiation of labile and strongly coordinating axial ligands for the Co(II) complex. Labile, or weakly coordinating, ligands such as methanol result in larger g-tensor anisotropy than strongly coordinating ligands such as pyridine. In addition, a coordination number effect is seen for the strongly coordinating ligands with both singly ligated LCo(dmgBF(2))(2) and doubly ligated L(2)Co(dmgBF(2))(2) . The presence of two strongly coordinating axial ligands leads to the smallest g-tensor anisotropy. The relevance of the strength of the axial ligand(s) to the catalytic efficiency of Co(dmgBF(2))(2) is discussed. Finally, the influence of molecular oxygen and formation of Co(III) superoxide radicals LCo(dmgBF(2))(2)O(2)(•) is studied. The experimental results are compared with a comprehensive set of DFT calculations on Co(dmgBF(2))(2) model systems with various axial ligands. Comparison with experimental values for the "key" magnetic parameters such as g-tensor and (59)Co hyperfine coupling tensor allows the determination of the conformation of the axially ligated Co(dmgBF(2))(2) complexes. The data presented here are vital for understanding the influence of solvent and ligand coordination on the catalytic efficiency of cobaloximes.


Subject(s)
Hydrogen/metabolism , Organometallic Compounds/metabolism , Catalysis , Electron Spin Resonance Spectroscopy
10.
Photosynth Res ; 102(2-3): 267-79, 2009.
Article in English | MEDLINE | ID: mdl-19636808

ABSTRACT

Advances in X-ray light sources and detectors have created opportunities for advancing our understanding of structure and structural dynamics for supramolecular assemblies in solution by combining X-ray scattering measurement with coordinate-based modeling methods. In this review the foundations for X-ray scattering are discussed and illustrated with selected examples demonstrating the ability to correlate solution X-ray scattering measurements to molecular structure, conformation, and dynamics. These approaches are anticipated to have a broad range of applications in natural and artificial photosynthesis by offering possibilities for structure resolution for dynamic supramolecular assemblies in solution that can not be fully addressed with crystallographic techniques, and for resolving fundamental mechanisms for solar energy conversion by mapping out structure in light-excited reaction states.


Subject(s)
Photosynthesis/physiology , X-Ray Diffraction/methods , Bacterial Proteins/chemistry , Molecular Dynamics Simulation , Photoreceptors, Microbial/chemistry , Solutions , Transition Elements/chemistry
11.
J Phys Chem A ; 113(11): 2516-23, 2009 Mar 19.
Article in English | MEDLINE | ID: mdl-19243123

ABSTRACT

Solution-phase X-ray scattering measurements in combination with coordinate-based modeling have been used to characterize the conformational ensemble of a hexameric, diphenylethyne-linked porphyrin array in solution. Configurationally broadened X-ray scattering patterns measured at room temperature for dilute toluene solutions of the porphyrin array were compared to scattering patterns calculated from structural ensembles in constant pressure and temperature molecular dynamics simulations. Thermal fluctuations sampled at picosecond intervals within nanosecond time scale dynamic simulations show large-amplitude motions that include porphyrin ring "tipping" around the porphyrin linkage axes and extended hexameric porphyrin array "breathing" motions involving torsional distortions collectively distributed along porphyrin and diphenylethyne groups. Each type of group motion produced characteristic, angle-dependent dampening of scattering features that are needed to reproduce dampening features in the experimental X-ray scattering. However, mismatches in the magnitudes of experimental and simulated dampening of high-angle X-ray scattering patterns show that large-amplitude hexamer array breathing-type motions are significantly under-represented in the simulated ensembles. This comparison between experiment and simulation provides a means not only to interpret scattering data in terms of an explicit atomic model but more generally demonstrates the use of solution X-ray scattering as an experimental benchmark for the development of simulation methods that more accurately predict configurational dynamics of supramolecular assemblies.


Subject(s)
Macromolecular Substances/chemistry , Porphyrins/chemistry , Computer Simulation , Motion , Solutions , Thermodynamics , Toluene , X-Ray Diffraction
12.
J Phys Chem B ; 110(2): 971-5, 2006 Jan 19.
Article in English | MEDLINE | ID: mdl-16471631

ABSTRACT

The design of new supramolecular complexes often depends on reducing entropic contributions to improve binding. However, few studies provide reliable values for the cost of entropic contributions. Here, the binding affinities of a series of six alpha,omega-diamides to alpha,omega-dicarboxylates are calculated using a predominant states method and an implicit solvent model based upon finite difference solutions of the Poisson-Boltzmann equation. The calculations are able to reproduce the observed increase in binding free energy as the number of single bonds increases. However, calculations show that the increase in binding free energy is not due to an increase in entropy. Instead, the increase is due to the changing ability of the alpha,omega-diamides to form internal hydrogen bonds that must be disrupted to bind to the dicarboxylate receptors. This suggests that interpreting experimental free-energy trends to give rotational entropy contributions may be problematic.

SELECTION OF CITATIONS
SEARCH DETAIL
...