Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 350: 126922, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35240277

ABSTRACT

Haslea ostrearia is a marine diatom known to produce and excrete the marenine blue pigment. Its controlled, continuous and intensified cultivation remains a challenge. Thus, a submerged membrane photobioreactor (MPBR) was implemented in order to simultaneously and continuously cultivate H. ostrearia and extract marennine. The MPBR was compared with a similar air-lift photobioreactor (without membrane), both working at a dilution rate equal to 0.1, 0.3 and 0.5 d-1. Contrary to the air-lift photobioreactor, the MPBR successfully operated at high dilution rate without biomass washout. The MPBR allowed continuously recovering marennine and reaching high cell density (555 ± 25 × 106 cells L-1 at D = 0.1 d-1), marennine concentration (36.00 ± 0.02 mg L-1 at D = 0.1 d-1) and marenine productivity (7.20 ± 0.01 mg L-1 d-1 at D = 0.5 d-1).


Subject(s)
Diatoms , Biomass , Phenols , Photobioreactors , Pigmentation
2.
Biotechnol Prog ; 32(2): 247-61, 2016 03.
Article in English | MEDLINE | ID: mdl-26871260

ABSTRACT

An in-depth investigation of how various illumination conditions influence microalgal growth in photobioreactors (PBR) has been presented. Effects of both the light emission spectrum (white and red) and the light incident angle (0° and 60°) on the PBR surface were investigated. The experiments were conducted in two fully controlled lab-scale PBRs, a torus PBR and a thin flat-panel PBR for high cell density culture. The results obtained in the torus PBR were used to build the kinetic growth model of Chlorella vulgaris taken as a model species. The PBR model was then applied to the thin flat-panel PBR, which was run with various illumination conditions. Its detailed representation of local rate of photon absorption under various conditions (spectral calculation of light attenuation, incident angle influence) enabled the model to take into account all the tested conditions with no further adjustment. This allowed a detailed investigation of the coupling between radiation field and photosynthetic growth. Effects of all the radiation conditions together with pigment acclimation, which was found to be relevant, were investigated in depth. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:247-261, 2016.


Subject(s)
Chlorella vulgaris/growth & development , Chlorella vulgaris/radiation effects , Light , Models, Biological , Photobioreactors , Cell Culture Techniques , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...