Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202401797, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973291

ABSTRACT

This paper investigates the esterase activity of minimalist amyloid fibers composed of short seven-residue peptides, IHIHIHI (IH7) and IHIHIQI (IH7Q), with a particular focus on the role of the sixth residue position within the peptide sequence. Through computational simulations and analyses, we explore the molecular mechanisms underlying catalysis in these amyloid-based enzymes. Contrary to initial hypotheses, our study reveals that the twist angle of the fiber, and thus the catalytic site's environment, is not notably affected by the sixth residue. Instead, the sixth residue interacts with the p-nitrophenylacetate (pNPA) substrate, particularly through its -NO2 group, potentially enhancing catalysis. Quantum mechanics/molecular mechanics (QM/MM) simulations of the reaction mechanism suggest that the polarizing effect of glutamine enhances catalytic activity by forming a stabilizing network of hydrogen bonds with pNPA, leading to lower energy barriers and a more exergonic reaction. Our findings provide valuable insights into the intricate interplay between peptide sequence, structural arrangement, and catalytic function in amyloid-based enzymes, offering potentially valuable information for the design and optimization of biomimetic catalysts.

2.
Chemistry ; : e202401712, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923243

ABSTRACT

The binding of the potential drug [VIVO(8-HQ)2], where 8-HQ is 8-hydroxyquinolinato, with hen egg white lysozyme (HEWL) was evaluated through spectroscopic (electron paramagnetic resonance, EPR, and UV-visible), spectrometric (electrospray ionization-mass spectrometry, ESI-MS), crystallographic (X-ray diffraction, XRD), and computational (DFT and docking) studies. ESI-MS indicates the interaction of [VIVO(8-HQ)(H2O)]+ and [VIVO(8-HQ)2(H2O)] species with HEWL. Room temperature EPR spectra suggest both covalent and non-covalent binding of the two different V-containing fragments. XRD analyses confirm these findings, showing that [VIVO(8-HQ)(H2O)]+ interacts covalently with the solvent exposed Asp119, while cis-[VIVO(8-HQ)2(H2O)] non-covalently with Arg128 and Lys96 from a symmetry mate. The covalent binding of [VIVO(8-HQ)(H2O)]+ to Asp119 is favored by a π-π contact with Trp62 and a H-bond with Asn103 of a symmetry-related molecule. Additionally, the covalent binding of VVO2+ to Asp48 and non-covalent binding of other V-containing fragments to Arg5, Cys6, and Glu7 is revealed. Molecular docking indicates that, in the absence of the interactions occurring at the protein-protein interface close to Asp119, the binding to Glu35 or Asp52 should be preferred. Such a protein-protein stabilization could be more common than what believed up today, at least in the solid state, and should be considered in the characterization of metal-protein adducts.

3.
Chemistry ; 30(39): e202401165, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38752552

ABSTRACT

An Artificial Metalloenzyme (ArM) built employing the streptavidin-biotin technology has been used for the enantioselective synthesis of binaphthyls by means of asymmetric Suzuki-Miyaura cross-coupling reactions. Despite its success, it remains a challenge to understand how the length of the biotin cofactors or the introduction of mutations to streptavidin leads the preferential synthesis of one atropisomer over the other. In this study, we apply an integrated computational modeling approach, including DFT calculations, protein-ligand dockings and molecular dynamics to rationalize the impact of mutations and length of the biotion cofactor on the enantioselectivities of the biaryl product. The results unravel that the enantiomeric differences found experimentally can be rationalized by the disposition of the first intermediate, coming from the oxidative addition step, and the entrance of the second substrate. The work also showcases the difficulties facing to control the enantioselection when engineering ArM to catalyze enantioselective Suzuki-Miyaura couplings and how the combination of DFT calculations, molecular dockings and MD simulations can be used to rationalize artificial metalloenzymes.


Subject(s)
Density Functional Theory , Molecular Dynamics Simulation , Streptavidin , Stereoisomerism , Streptavidin/chemistry , Streptavidin/metabolism , Catalysis , Biotin/chemistry , Biotin/analogs & derivatives , Ligands , Molecular Docking Simulation , Metalloproteins/chemistry , Metalloproteins/metabolism
4.
Methods Enzymol ; 697: 211-245, 2024.
Article in English | MEDLINE | ID: mdl-38816124

ABSTRACT

Among the important questions in supramolecular peptide self-assemblies are their interactions with metallic compounds and ions. In the last decade, intensive efforts have been devoted to understanding the structural properties of these interactions including their dynamical and catalytic impact in natural and de novo systems. Since structural insights from experimental approaches could be particularly challenging, computational chemistry methods are interesting complementary tools. Here, we present the general multiscale strategies we developed and applied for the study of metallopeptide assemblies. These strategies include prediction of metal binding site, docking of metallic moieties, classical and accelerated molecular dynamics and finally QM/MM calculations. The systems of choice for this chapter are, on one side, peptides involved in neurodegenerative diseases and, on the other, de novo fibrillar systems with catalytic properties. Both successes and remaining challenges are highlighted so that the protocol could be apply to other system of this kind.


Subject(s)
Metalloproteins , Molecular Dynamics Simulation , Peptides , Peptides/chemistry , Metalloproteins/chemistry , Binding Sites , Humans , Molecular Docking Simulation/methods , Metals/chemistry , Quantum Theory
5.
Inorg Chem ; 63(10): 4725-4737, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38408469

ABSTRACT

One of the main hallmarks of Alzheimer's Disease is the formation of ß-amyloid plaques, whose formation may be enhanced by metal binding or the appearance of familial mutations. In the present study, the simultaneous effect of familial mutations (E22Q, E22G, E22K, and D23N) and binding to metal ions (Cu(II) or Al(III)) is studied at the Aß42 monomeric and fibrillar levels. With the application of GaMD and MD simulations, it is observed that the effects of metal binding and mutations differ in the monomeric and fibrillar forms. In the monomeric structures, without metal binding, all mutations reduce the amount of α-helix and increase, in some cases, the ß-sheet content. In the presence of Cu(II) and Al(III) metal ions, the peptide becomes less flexible, and the ß-sheet content decreases in favor of forming α-helix motifs that stabilize the system through interhelical contacts. Regarding the fibrillar structures, mutations decrease the opening of the fiber in the vertical axis, thereby stabilizing the S-shaped structure of the fiber. This effect is, in general, enhanced upon metal binding. These results may explain the different Aß42 aggregation patterns observed in familial mutations.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Mutation , Metals , Ions , Peptide Fragments/chemistry
7.
Insect Biochem Mol Biol ; 164: 104041, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38008364

ABSTRACT

The cytochrome P450 enzymes of the CYP4G subfamily are some of the most intriguing insect P450s in terms of structure and function. In Drosophila, CYP4G1 is highly expressed in the oenocytes and is the last enzyme in the biosynthesis of cuticular hydrocarbons, while CYP4G15 is expressed in the brain and is of unknown function. Both proteins have a CYP4G-specific and characteristic amino acid sequence insertion corresponding to a loop between the G and H helices whose function is unclear. Here we address these enigmatic structural and functional features of Drosophila CYP4Gs. First, we used reverse genetics to generate D. melanogaster strains in which all or part of the CYP4G-specific loop was removed from CYP4G1. We showed that the full loop was not needed for proper folding of the P450, but it is essential for function, and that just a short stretch of six amino acids is required for the enzyme's ability to make hydrocarbons. Second, we confirmed by immunocytochemistry that CYP4G15 is expressed in the brain and showed that it is specifically associated with the cortex glia cell subtype. We then expressed CYP4G15 ectopically in oenocytes, revealing that it can produce of a blend of hydrocarbons, albeit to quantitatively lower levels resulting in only a partial rescue of CYP4G1 knockdown flies. The CYP4G1 structural variants studied here should facilitate the biochemical characterization of CYP4G enzymes. Our results also raise the question of the putative role of hydrocarbons and their synthesis by cortex glial cells.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Insecta/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Hydrocarbons/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
8.
Nat Commun ; 14(1): 5436, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670029

ABSTRACT

J-domain proteins tune the specificity of Hsp70s, engaging them in precise functions. Despite their essential role, the structure and function of many J-domain proteins remain largely unknown. We explore human DNAJA2, finding that it reversibly forms highly-ordered, tubular structures that can be dissociated by Hsc70, the constitutively expressed Hsp70 isoform. Cryoelectron microscopy and mutational studies reveal that different domains are involved in self-association. Oligomer dissociation into dimers potentiates its interaction with unfolded client proteins. The J-domains are accessible to Hsc70 within the tubular structure. They allow binding of closely spaced Hsc70 molecules that could be transferred to the unfolded substrate for its cooperative remodelling, explaining the efficient recovery of DNAJA2-bound clients. The disordered C-terminal domain, comprising the last 52 residues, regulates its holding activity and productive interaction with Hsc70. These in vitro findings suggest that the association equilibrium of DNAJA2 could regulate its interaction with client proteins and Hsc70.


Subject(s)
HSP70 Heat-Shock Proteins , Polymers , Humans , Cryoelectron Microscopy , HSP40 Heat-Shock Proteins , Mutation
9.
Bioinformatics ; 39(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37549048

ABSTRACT

MOTIVATION: Graphical analysis of the molecular structure of proteins can be very complex. Full-atom representations retain most geometric information but are generally crowded, and key structural patterns can be challenging to identify. Non-full-atom representations could be more instructive on physicochemical aspects but be insufficiently detailed regarding shapes (e.g. entity beans-like models in coarse grain approaches) or simple properties of amino acids (e.g. representation of superficial electrostatic properties). In this work, we present TALAIA a visual dictionary that aims to provide another layer of structural representations.TALAIA offers a visual grammar that combines simple representations of amino acids while retaining their general geometry and physicochemical properties. It uses unique objects, with differentiated shapes and colors to represent amino acids. It makes easier to spot crucial molecular information, including patches of amino acids or key interactions between side chains. Most conventions used in TALAIA are standard in chemistry and biochemistry, so experimentalists and modelers can rapidly grasp the meaning of any TALAIA depiction. RESULTS: We propose TALAIA as a tool that renders protein structures and encodes structure and physicochemical aspects as a simple visual grammar. The approach is fast, highly informative, and intuitive, allowing the identification of possible interactions, hydrophobic patches, and other characteristic structural features at first glance. The first implementation of TALAIA can be found at https://github.com/insilichem/talaia.


Subject(s)
Amino Acids , Proteins , Proteins/chemistry , Amino Acids/chemistry , Hydrophobic and Hydrophilic Interactions
10.
Front Neurosci ; 17: 1110311, 2023.
Article in English | MEDLINE | ID: mdl-36814794

ABSTRACT

One of Alzheimer's disease major hallmarks is the aggregation of ß-amyloid peptide, a process in which metal ions play an important role. In the present work, an integrative computational study has been performed to identify the metal-binding regions and determine the conformational impact of Cu(II) and Al(III) ion binding to the ß-amyloid (Aß42) fibrillary structure. Through classical and Gaussian accelerated molecular dynamics, it has been observed that the metal-free fiber shows a hinge fan-like motion of the S-shaped structure, maintaining the general conformation. Upon metal coordination, distinctive patterns are observed depending on the metal. Cu(II) binds to the flexible N-terminal region and induces structural changes that could ultimately disrupt the fibrillary structure. In contrast, Al(III) binding takes place with the residues Glu22 and Asp23, and its binding reinforces the core stability of the system. These results give clues on the molecular impact of the interaction of metal ions with the aggregates and sustain their non-innocent roles in the evolution of the illness.

11.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36498969

ABSTRACT

The covalent insertion of a cobalt heme into the cavity of an artificial protein named alpha Rep (αRep) leads to an artificial cobalt hemoprotein that is active as a catalyst not only for the photo-induced production of H2, but also for the reduction of CO2 in a neutral aqueous solution. This new artificial metalloenzyme has been purified and characterized by Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS), circular dichroism, and UltraViolet-Visible spectroscopy. Using theoretical experiments, the structure of this biohybrid and the positioning of the residues near the metal complex were examined, which made it possible to complete the coordination of the cobalt ion by an axial glutamine Gln283 ligand. While the Co(III)-porphyrin catalyst alone showed weak catalytic activity for both reactions, 10 times more H2 and four times more CO2 were produced when the Co(III)-porphyrin complex was buried in the hydrophobic cavity of the protein. This study thus provides a solid basis for further improvement of these biohybrids using well-designed modifications of the second and outer coordination sphere by site-directed mutagenesis of the host protein.


Subject(s)
Coordination Complexes , Hemeproteins , Porphyrins , Cobalt/chemistry , Carbon Dioxide/chemistry , Coordination Complexes/chemistry , Catalysis , Hydrogen/chemistry
12.
Inorg Chem ; 61(43): 17068-17079, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36250592

ABSTRACT

Many biological systems obtain their activity by the inclusion of metalloporphyrins into one or several binding pockets. However, decoding the molecular mechanism under which these compounds bind to their receptors is something that has not been widely explored and is a field with open questions. In the present work, we apply computational techniques to unravel and compare the mechanisms of two heme-binding systems, concretely the HasA hemophores from Gram negative bacteria Serratiamarcescens (HasAsm) and Yersinia pestis (HasAyp). Despite the high sequence identity between both systems, the comparison between the X-ray structures of their apo and holo forms suggests different heme-binding mechanisms. HasAyp has extremely similar structures for heme-free and heme-bound forms, while HasAsm presents a very large displacement of a loop that ultimately leads to an additional coordination to the metal with respect to HasAyp. We combined Gaussian accelerated molecular dynamics simulations (GaMDs) in explicit solvent and protein-ligand docking optimized for metalloligands. GaMDs were first carried out on heme-free forms of both hemophores. Then, protein-ligand dockings of the heme were performed on cluster representatives of these simulations and the best poses were then subjected to a new series of GaMDs. A series of analyses reveal the following: (1) HasAyp has a conformational landscape extremely similar between heme-bound and unbound states with no to limited impact on the binding of the cofactor, (2) HasAsm presents as a slightly broader conformational landscape in its apo state but can only visit conformations similar to the X-ray of the holo form when the heme has been bound. Such behavior results from a complex cascade of changes in interactions that spread from the heme-binding pocket to the flexible loop previously mentioned. This study sheds light on the diversity of molecular mechanisms of heme-binding and discusses the weight between the pre-organization of the receptor as well as the induced motions resulting in association.


Subject(s)
Bacterial Proteins , Heme , Ligands , Bacterial Proteins/chemistry , Heme/chemistry , Carrier Proteins/chemistry , Molecular Dynamics Simulation , Protein Conformation
13.
Nat Commun ; 13(1): 5577, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151080

ABSTRACT

In the barley ß-D-glucan glucohydrolase, a glycoside hydrolase family 3 (GH3) enzyme, the Trp286/Trp434 clamp ensures ß-D-glucosides binding, which is fundamental for substrate hydrolysis during plant growth and development. We employ mutagenesis, high-resolution X-ray crystallography, and multi-scale molecular modelling methods to examine the binding and conformational behaviour of isomeric ß-D-glucosides during substrate-product assisted processive catalysis that operates in GH3 hydrolases. Enzyme kinetics reveals that the W434H mutant retains broad specificity, while W434A behaves as a strict (1,3)-ß-D-glucosidase. Investigations of reactant movements on the nanoscale reveal that processivity is sensitive to mutation-specific alterations of the tryptophan clamp. While wild-type and W434H utilise a lateral cavity for glucose displacement and sliding of (1,3)-linked hydrolytic products through the catalytic site without dissociation, consistent with their high hydrolytic rates, W434A does not adopt processive catalysis. Phylogenomic analyses of GH3 hydrolases disclose the evolutionary advantage of the tryptophan clamp that confers broad specificity, high catalytic efficiency, and processivity.


Subject(s)
Glycoside Hydrolases , Tryptophan , Crystallography, X-Ray , Glucose , Glucosidases/chemistry , Glucosides , Glycoside Hydrolases/metabolism , Glycosides , Kinetics , Plants/metabolism , Substrate Specificity
14.
Chemistry ; 28(60): e202201792, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-35859038

ABSTRACT

The Nazarov cyclization is investigated in solution and within K12 [Ga4 L6 ] supramolecular organometallic cage by means of computational methods. The reaction needs acidic condition in solution but works at neutral pH in the presence of the metallocage. The reaction steps for the process are analogous in both media: (a) protonation of the alcohol group, (b) water loss and (c) cyclization. The relative Gibbs energies of all the steps are affected by changing the environment from solvent to the metallocage. The first step in the mechanism, the alcohol protonation, turns out to be the most critical one for the acceleration of the reaction inside the metallocage. In order to calculate the relative stability of protonated alcohol inside the cavity, we propose a computational scheme for the calculation of basicity for species inside cavities and can be of general use. These results are in excellent agreement with the experiments, identifying key steps of catalysis and providing an in-depth understanding of the impact of the metallocage on all the reaction steps.


Subject(s)
Ethanol , Water , Cyclization , Catalysis , Solvents
15.
Int J Mol Sci ; 23(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35887053

ABSTRACT

Disaccharide complexes have been shown experimentally to be useful for drug delivery or as an antifouling surface biofilm, and are promising drug-encapsulation and delivery candidates. Although such complexes are intended for medical applications, to date no studies at the molecular level have been devoted to the influence of complexation on the enzymatic decomposition of polysaccharides. A theoretical approach to this problem has been hampered by the lack of a suitable computational tool for binding such non-covalent complexes to enzymes. Herein, we combine quantum-mechanical calculations of disaccharides complexes with a nonstandard docking GaudiMM engine that can perform such a task. Our results on four different complexes show that they are mostly stabilized by electrostatic interactions and hydrogen bonds. This strong non-covalent stabilization demonstrates the studied complexes are some excellent candidates for self-assembly smart materials, useful for drug encapsulation and delivery. Their advantage lies also in their biocompatible and biodegradable character.


Subject(s)
Disaccharides , Disaccharides/metabolism , Hydrogen Bonding , Static Electricity
16.
Chem Commun (Camb) ; 58(56): 7769-7772, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35730795

ABSTRACT

Non-canonical DNA structures, particularly 3-Way Junctions (3WJs) that are transiently formed during DNA replication, have recently emerged as promising chemotherapeutic targets. Here, we describe a new approach to target 3WJs that relies on the cooperative and sequence-selective recognition of A/T-rich duplex DNA branches by three AT-Hook peptides attached to a three-fold symmetric and fluorogenic 1,3,5-tristyrylbenzene core.


Subject(s)
DNA Replication , DNA , DNA/chemistry , Nucleic Acid Conformation
19.
Faraday Discuss ; 234(0): 349-366, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35147145

ABSTRACT

Molecular modelling applications in metalloenzyme design are still scarce due to a series of challenges. On top of that, the simulations of metal-mediated binding and the identification of catalytic competent geometries require both large conformational exploration and simulation of fine electronic properties. Here, we demonstrate how the incorporation of new tools in multiscale strategies, namely substrate diffusion exploration, allows taking a step further. As a showcase, the enantioselective profiles of the most outstanding variants of an artificial Rh2-based cyclopropanase (GSH, HFF and RFY) developed by Lewis and co-workers (Nat. Commun., 2015, 6, 7789 and Nat. Chem., 2018, 10, 318-324) have been rationalized. DFT calculations on the free-cofactor-mediated process identify the carbene insertion and the cyclopropanoid formation as crucial events, the latter being the enantiodetermining step, which displays up to 8 competitive orientations easily altered by the protein environment. The key intermediates of the reaction were docked into the protein scaffold showing that some mutated residues have direct interaction with the cofactor and/or the co-substrate. These interactions take the form of a direct coordination of Rh in GSH and HFF and a strong hydrophobic patch with the carbene moiety in RFY. Posterior molecular dynamics sustain that the cofactor induces global re-arrangements of the protein. Finally, massive exploration of substrate diffusion, based on the GPathFinder approach, defines this event as the origin of the enantioselectivity in GSH and RFY. For HFF, fine molecular dockings suggest that it is likely related to local interactions upon diffusion. This work shows how modelling of long-range mutations on the catalytic profiles of metalloenzymes may be unavoidable and software simulating substrate diffusion should be applied.


Subject(s)
Metalloproteins , Catalysis , Humans , Metalloproteins/chemistry , Metalloproteins/genetics , Metalloproteins/metabolism , Molecular Dynamics Simulation
20.
Commun Chem ; 5(1): 75, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-36697641

ABSTRACT

RAS oncoproteins are molecular switches associated with critical signaling pathways that regulate cell proliferation and differentiation. Mutations in the RAS family, mainly in the KRAS isoform, are responsible for some of the deadliest cancers, which has made this protein a major target in biomedical research. Here we demonstrate that a designed bis-histidine peptide derived from the αH helix of the cofactor SOS1 binds to KRAS with high affinity upon coordination to Pd(II). NMR spectroscopy and MD studies demonstrate that Pd(II) has a nucleating effect that facilitates the access to the bioactive α-helical conformation. The binding can be suppressed by an external metal chelator and recovered again by the addition of more Pd(II), making this system the first switchable KRAS binder, and demonstrates that folding-upon-binding mechanisms can operate in metal-nucleated peptides. In vitro experiments show that the metallopeptide can efficiently internalize into living cells and inhibit the MAPK kinase cascade.

SELECTION OF CITATIONS
SEARCH DETAIL
...