Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Article in English | MEDLINE | ID: mdl-38906411

ABSTRACT

INTRODUCTION: Both maternal depression problems during pregnancy and prenatal exposure to air pollution have been associated with changes in the brain as well as worse mood and anxiety in the offspring in adulthood. However, it is not clear whether these effects are independent or whether and how they might interact and impact the brain age and mental health of the young adult offspring. METHODS: A total of 202 mother-child dyads from a prenatal birth cohort were assessed for maternal depression during pregnancy through self-report questionnaires administered in the early 90s, exposure to air pollutants (Sulfur dioxide [SO2], nitrogen oxides [NOx], and suspended particle matter [SPM]) during each trimester based on maternal address and air quality data, mental health of the young adult offspring (28-30 years of age; 52% men, all of European ancestry) using self-report questionnaires for depression (Beck Depression Inventory), mood dysregulation (Profile of Mood States), anxiety (State-Trait Anxiety Inventory), and psychotic symptoms (Schizotypal Personality Questionnaire), and brain age, estimated from structural magnetic resonance imaging (MRI) and previously published neuroanatomical age prediction model using cortical thickness maps. The brain age gap estimate (BrainAGE) was computed by subtracting structural brain age from chronological age. Trajectories of exposure to air pollution during pregnancy were assessed using Growth Mixture Modeling. The interactions of prenatal depression and prenatal exposure to air pollutants on adult mental health and BrainAGE were assessed using hierarchical linear regression. RESULTS: We revealed two distinct trajectories of exposure to air pollution during pregnancy: "early exposure," characterized by high exposure during the first trimester, followed by a steady decrease, and "late exposure," characterized by low exposure during the first trimester, followed by a steady increase in the exposure during the subsequent trimesters. Maternal depression during the first half of pregnancy interacted with NOX exposure trajectory, predicting mood dysregulation and schizotypal symptoms in young adults. In addition, maternal depression during the second half of pregnancy interacted with both NOx and SO2 exposure trajectories, respectively, and predicted BrainAGE in young adults. In those with early exposure to NOx, maternal depression during pregnancy was associated with worse mental health and accelerated brain aging in young adulthood. In contrast, in those with early exposure to SO2, maternal depression during pregnancy was associated with slower brain aging in young adulthood. CONCLUSIONS: Our findings provide the first evidence of the combined effects of prenatal exposure to air pollution and maternal depression on mental health outcomes and brain age in young adult offspring. Moreover, they point out the importance of the timing and trajectory of the exposure during prenatal development.

2.
Transl Psychiatry ; 14(1): 220, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806472

ABSTRACT

Heavy maternal alcohol drinking during pregnancy has been associated with altered neurodevelopment in the child but the effects of low-dose alcohol drinking are less clear and any potential safe level of alcohol use during pregnancy is not known. We evaluated the effects of prenatal alcohol on reward-related behavior and substance use in young adulthood and the potential sex differences therein. Participants were members of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort who participated in its neuroimaging follow-up in young adulthood. A total of 191 participants (28-30 years; 51% men) had complete data on prenatal exposure to alcohol, current substance use, and fMRI data from young adulthood. Maternal alcohol drinking was assessed during mid-pregnancy and pre-conception. Brain response to reward anticipation and reward feedback was measured using the Monetary Incentive Delay task and substance use in young adulthood was assessed using a self-report questionnaire. We showed that even a moderate exposure to alcohol in mid-pregnancy but not pre-conception was associated with robust effects on brain response to reward feedback (six frontal, one parietal, one temporal, and one occipital cluster) and with greater cannabis use in both men and women 30 years later. Moreover, mid-pregnancy but not pre-conception exposure to alcohol was associated with greater cannabis use in young adulthood and these effects were independent of maternal education and maternal depression during pregnancy. Further, the extent of cannabis use in the late 20 s was predicted by the brain response to reward feedback in three out of the nine prenatal alcohol-related clusters and these effects were independent of current alcohol use. Sex differences in the brain response to reward outcome emerged only during the no loss vs. loss contrast. Young adult men exposed to alcohol prenatally had significantly larger brain response to no loss vs. loss in the putamen and occipital region than women exposed to prenatal alcohol. Therefore, we conclude that even moderate exposure to alcohol prenatally has long-lasting effects on brain function during reward processing and risk of cannabis use in young adulthood.


Subject(s)
Alcohol Drinking , Brain , Magnetic Resonance Imaging , Prenatal Exposure Delayed Effects , Reward , Humans , Female , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology , Male , Adult , Alcohol Drinking/psychology , Alcohol Drinking/adverse effects , Longitudinal Studies , Brain/diagnostic imaging , Brain/drug effects , Brain/physiopathology , Sex Factors
3.
Front Aging Neurosci ; 15: 1215957, 2023.
Article in English | MEDLINE | ID: mdl-37593374

ABSTRACT

Introduction: The proportion of older adults within society is sharply increasing and a better understanding of how we age starts to be critical. However, given the paucity of longitudinal studies with both neuroimaging and epigenetic data, it remains largely unknown whether the speed of the epigenetic clock changes over the life course and whether any such changes are proportional to changes in brain aging and cognitive skills. To fill these knowledge gaps, we conducted a longitudinal study of a prenatal birth cohort, studied epigenetic aging across adolescence and young adulthood, and evaluated its relationship with brain aging and cognitive outcomes. Methods: DNA methylation was assessed using the Illumina EPIC Platform in adolescence, early and late 20 s, DNA methylation age was estimated using Horvath's epigenetic clock, and epigenetic age gap (EpiAGE) was calculated as DNA methylation age residualized for batch, chronological age and the proportion of epithelial cells. Structural magnetic resonance imaging (MRI) was acquired in both the early 20 s and late 20 s using the same 3T Prisma MRI scanner and brain age was calculated using the Neuroanatomical Age Prediction using R (NAPR) platform. Cognitive skills were assessed using the Wechsler Adult Intelligence Scale (WAIS) in the late 20 s. Results: The EpiAGE in adolescence, the early 20 s, and the late 20 s were positively correlated (r = 0.34-0.47), suggesting that EpiAGE is a relatively stable characteristic of an individual. Further, a faster pace of aging between the measurements was positively correlated with EpiAGE at the end of the period (r = 0.48-0.77) but negatively correlated with EpiAGE at the earlier time point (r = -0.42 to -0.55), suggesting a compensatory mechanism where late matures might be catching up with the early matures. Finally, higher positive EpiAGE showed small (Adj R2 = 0.03) but significant relationships with a higher positive brain age gap in all participants and lower full-scale IQ in young adult women in the late 20 s. Discussion: We conclude that the EpiAGE is a relatively stable characteristic of an individual across adolescence and early adulthood, but that it shows only a small relationship with accelerated brain aging and a women-specific relationship with worse performance IQ.

4.
Front Endocrinol (Lausanne) ; 14: 1171244, 2023.
Article in English | MEDLINE | ID: mdl-37484955

ABSTRACT

Background: Obesity has been associated with depressive symptoms and impaired cognition, but the mechanisms underlying these relationships are not well understood. It is also not clear whether reducing adiposity reverses these behavioral outcomes. The current study tested the impact of bariatric surgery on depressive symptoms, cognition, and the brain; using a mediation model, we also examined whether the relationship between changes in adiposity after the surgery and those in regional thickness of the cerebral cortex are mediated by changes in low-grade inflammation (as indexed by C-reactive protein; CRP). Methods: A total of 18 bariatric patients completed 3 visits, including one baseline before the surgery and two post-surgery measurements acquired at 6- and 12-months post-surgery. Each visit consisted of a collection of fasting blood sample, magnetic resonance imaging of the brain and abdomen, and assessment of depressive symptoms and cognition. Results: After surgery, we observed reductions of both visceral fat (p< 0.001) and subcutaneous fat (p< 0.001), less depressive symptoms (p< 0.001), improved verbal reasoning (p< 0.001), and reduced CRP (p< 0.001). Mediation analyses revealed that the relationships between the surgery-related changes in visceral fat and cortical thickness in depression-related regions are mediated by changes in CRP (ab=-.027, SE=.012, 95% CI [-.054, -,006]). Conclusion: These findings suggest that some of the beneficial effects of bariatric surgery on brain function and structure are due to a reduction of adiposity-related low-grade systemic inflammation.


Subject(s)
Bariatric Surgery , Depression , Humans , Depression/etiology , Inflammation/complications , Brain/diagnostic imaging , Obesity/complications , Obesity/surgery , Bariatric Surgery/methods , Cognition
5.
Sci Rep ; 13(1): 2761, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797291

ABSTRACT

The aim was to investigate the association of parental education at birth with cognitive ability in childhood and young adulthood and determine, whether functional connectivity of the salience network underlies this association. We studied participants of the Czech arm of the European Longitudinal Study of Pregnancy and Childhood who underwent assessment of their cognitive ability at age 8 (Wechsler Intelligence Scale for Children) and 28/29 years (Wechsler Adult Intelligence Scale) and measurement with resting state functional MRI at age 23/24. We estimated the associations of parental education with cognitive ability and functional connectivity between the seeds in the salience network and other voxels in the brain. We found that lower education of both mothers and fathers was associated with lower verbal IQ, performance IQ and full-scale IQ of the offspring at age 8. Only mother´s education was associated with performance IQ at age 28/29. Lower mother´s education correlated with greater functional connectivity between the right rostral prefrontal cortex and a cluster of voxels in the occipital cortex, which, in turn, was associated with lower performance IQ at age 28/29. We conclude that the impact of parental education, particularly father´s, on offspring´s cognitive ability weakens during the lifecourse. Functional connectivity between the right rostral prefrontal cortex and occipital cortex may be a biomarker underlying the transmission of mother´s education on performance IQ of their offspring.


Subject(s)
Cognition , Parents , Child , Pregnancy , Infant, Newborn , Adult , Female , Humans , Young Adult , Longitudinal Studies , Intelligence Tests , Educational Status
6.
JAMA Netw Open ; 6(1): e2254581, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36716025

ABSTRACT

Importance: Maternal mental health problems during pregnancy are associated with altered neurodevelopment in offspring, but the long-term relationship between these prenatal risk factors and offspring brain structure in adulthood remains incompletely understood due to a paucity of longitudinal studies. Objective: To evaluate the association between exposure to maternal depression in utero and offspring brain age in the third decade of life, and to evaluate recent stressful life events as potential moderators of this association. Design, Setting, and Participants: This cohort study examined the 30-year follow-up of a Czech prenatal birth cohort with a within-participant design neuroimaging component in young adulthood conducted from 1991 to 2022. Participants from the European Longitudinal Study of Pregnancy and Childhood prenatal birth cohort were recruited for 2 magnetic resonance imaging (MRI) follow-ups, one between ages 23 and 24 years (early 20s) and another between ages 28 and 30 years (late 20s). Exposures: Maternal depression during pregnancy; stressful life events in the past year experienced by the young adult offspring. Main Outcomes and Measures: Gap between estimated neuroanatomical vs chronological age at MRI scan (brain age gap estimation [BrainAGE]) calculated once in participants' early 20s and once in their late 20s, and pace of aging calculated as the differences between BrainAGE at the 2 MRI sessions in young adulthood. Results: A total of 260 individuals participated in the second neuroimaging follow-up (mean [SD] age, 29.5 [0.6] years; 135 [52%] male); MRI data for both time points and a history of maternal depression were available for 110 participants (mean [SD] age, 29.3 [0.6] years; 56 [51%] male). BrainAGE in participants' early 20s was correlated with BrainAGE in their late 20s (r = 0.7, P < .001), and a previously observed association between maternal depression during pregnancy and BrainAGE in their early 20s persisted in their late 20s (adjusted R2 = 0.04; P = .04). However, no association emerged between maternal depression during pregnancy and the pace of aging between the 2 MRI sessions. The stability of the associations between maternal depression during pregnancy and BrainAGE was also supported by the lack of interactions with recent stress. In contrast, more recent stress was associated with greater pace of aging between the 2 MRI sessions, independent of maternal depression (adjusted R2 = 0.09; P = .01). Conclusions and Relevance: The findings of this cohort study suggest that maternal depression and recent stress may have independent associations with brain age and the pace of aging, respectively, in young adulthood. Prevention and treatment of depression in pregnant mothers may have long-term implications for offspring brain development.


Subject(s)
Depression , Prenatal Exposure Delayed Effects , Pregnancy , Female , Young Adult , Humans , Male , Adult , Child , Cohort Studies , Longitudinal Studies , Adult Children , Brain/diagnostic imaging
7.
Article in English | MEDLINE | ID: mdl-36372293

ABSTRACT

The pre- and perinatal environment is thought to play a critical role in shaping brain development. Specifically, maternal mental health and maternal care have been shown to influence offspring brain development in regions implicated in emotional regulation such as the amygdala. In this study, we used data from a neuroimaging follow-up of a prenatal birth-cohort, the European Longitudinal Study of Pregnancy and Childhood, to investigate the impact of early postnatal maternal anxiety/co-dependence, and prenatal and early-postnatal depression and dysregulated mood on amygdala volume and morphology in young adulthood (n = 103). We observed that in typically developing young adults, greater maternal anxiety/co-dependence after birth was significantly associated with lower volume (right: t = -2.913, p = 0.0045, ß = -0.523; left: t = -1.471, p = 0.144, ß = -0.248) and non-significantly associated with surface area (right: t = -3.502, q = 0.069, <10%FDR, ß = -0.090, left: t = -3.137, q = 0.117, <10%FDR, = -0.088) of the amygdala in young adulthood. Conversely, prenatal maternal depression and mood dysregulation in the early postnatal period was not associated with any volumetric or morphological changes in the amygdala in young adulthood. Our findings provide evidence for subtle but long-lasting alterations to amygdala morphology associated with differences in maternal anxiety/co-dependence in early development.


Subject(s)
Depression, Postpartum , Prenatal Exposure Delayed Effects , Female , Pregnancy , Young Adult , Humans , Adult , Child , Longitudinal Studies , Mental Health , Amygdala/diagnostic imaging , Brain , Depression/diagnostic imaging , Prenatal Exposure Delayed Effects/diagnostic imaging
8.
Neuroimage Clin ; 34: 102976, 2022.
Article in English | MEDLINE | ID: mdl-35316668

ABSTRACT

BACKGROUND: Prenatal stress influences brain development and mood disorder vulnerability. Brain structural covariance network (SCN) properties based on inter-regional volumetric correlations may reflect developmentally-mediated shared plasticity among regions. Childhood trauma is associated with amygdala-centric SCN reorganization patterns, however, the impact of prenatal stress on SCN properties remains unknown. METHODS: The study included participants from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) with archival prenatal stress data and structural MRI acquired in young adulthood (age 23-24). SCNs were constructed based on Freesurfer-extracted volumes of 7 subcortical and 34 cortical regions. We compared amygdala degree centrality, a measure of hubness, between those exposed to high vs. low (median split) prenatal stress, defined by maternal reports of stressful life events during the first (n = 93, 57% female) and second (n = 125, 54% female) half of pregnancy. Group differences were tested across network density thresholds (5-40%) using 10,000 permutations, with sex and intracranial volume as covariates, followed by sex-specific analyses. Finally, we sought to replicate our results in an independent all-male sample (n = 450, age 18-20) from the Avon Longitudinal Study of Parents and Children (ALSPAC). RESULTS: The high-stress during the first half of pregnancy ELSPAC group showed lower amygdala degree particularly in men, who demonstrated this difference at 10 consecutive thresholds, with no significant differences in global network properties. At the lowest significant density threshold, amygdala volume was positively correlated with hippocampus, putamen, rostral anterior and posterior cingulate, transverse temporal, and pericalcarine cortex in the low-stress (p(FDR) < 0.027), but not the high-stress (p(FDR) > 0.882) group. Although amygdala degree was nominally lower across thresholds in the high-stress ALSPAC group, these results were not significant. CONCLUSION: Unlike childhood trauma, prenatal stress may shift SCN towards a less amygdala-centric SCN pattern, particularly in men. These findings did not replicate in an all-male ALSPAC sample, possibly due to the sample's younger age and lower prenatal stress exposure.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Adolescent , Adult , Amygdala/diagnostic imaging , Brain , Child , Female , Hippocampus , Humans , Longitudinal Studies , Male , Pregnancy , Young Adult
9.
Psychol Med ; 52(13): 2671-2680, 2022 10.
Article in English | MEDLINE | ID: mdl-33327969

ABSTRACT

BACKGROUND: Experience of early-life socioeconomic deprivation (ELSD) may increase the risk of mental disorders in young adulthood. This association may be mediated by structural and functional alterations of the hippocampus. METHODS: We conducted a prospective cohort study on 122 participants of the European Longitudinal Study of Pregnancy and Childhood. Information about ELSD was collected via questionnaire from mothers during the first 18 months of participants' lives. At age 23-24, participants underwent examination by structural magnetic resonance imaging, resting-state functional connectivity and assessment of depressive symptoms (Mood and Feelings Questionnaire) and anxiety (Spielberger State-Trait Anxiety Inventory). The association of ELSD with brain outcomes in young adulthood was assessed with correlations, linear regression (adjusting for sex, socioeconomic position and mother's mental health) and moderated mediation analysis. RESULTS: Higher ELSD was associated with greater depressive symptoms (B = 0.22; p = 0.001), trait anxiety (B = 0.07; p = 0.02) and lower global connectivity of the right hippocampus (B = -0.01; p = 0.02). These associations persisted when adjusted for covariates. In women, lower global connectivity of the right hippocampus was associated with stronger trait anxiety (B = -4.14; p = 0.01). Global connectivity of the right hippocampus as well as connectivity between the right hippocampus and the left middle temporal gyrus mediated the association between ELSD and trait anxiety in women. Higher ELSD correlated with a lower volume of the right hippocampus in men, but the volume of the right hippocampus was not related to mental health. CONCLUSIONS: Early preventive strategies targeted at children from socioeconomically deprived families may yield long-lasting benefits for the mental health of the population.


Subject(s)
Anxiety , Depression , Male , Pregnancy , Child , Humans , Female , Young Adult , Adult , Longitudinal Studies , Prospective Studies , Magnetic Resonance Imaging , Hippocampus , Socioeconomic Factors
10.
Article in English | MEDLINE | ID: mdl-34358683

ABSTRACT

BACKGROUND: Exposure to maternal stress in utero has long-term implications for the developing brain and has been linked with a higher risk of depression. The amygdala, which develops during the early embryonic stage and is critical for emotion processing, might be particularly sensitive. METHODS: Using data from a neuroimaging follow-up of the European Longitudinal Study of Pregnancy and Childhood prenatal birth cohort (n = 129, 47% men, 23-24 years old), we studied the impact of prenatal stress during the first and second halves of pregnancy on the volume of the amygdala and its nuclei in young adult offspring. We further evaluated the relationship between amygdala anatomy and offspring depressive symptomatology. Amygdala nuclei were parcellated using FreeSurfer's automated segmentation pipeline. Depressive symptoms were measured via self-report using the Beck Depression Inventory. RESULTS: Exposure to stress during the first half of pregnancy was associated with smaller accessory basal (Cohen's f2 = 0.27, false discovery rate [FDR]-corrected p [pFDR] = .03) and cortical (Cohen's f2 = 0.29, pFDR = .03) nuclei volumes. This effect remained significant after correcting for sex, stress during the second half of pregnancy, maternal age at birth, birth weight, maternal education, and offspring's age at magnetic resonance imaging. These two nuclei showed a quadratic relationship with Beck Depression Inventory scores in young adulthood, where both smaller and larger volumes were associated with more depressive symptoms (accessory basal nucleus: adj. R2 = 0.05, pFDR = .015; cortical nucleus: adj. R2 = 0.04, pFDR = .015). CONCLUSIONS: We conclude that exposure to stress during the first half of pregnancy might have long-term implications for amygdala anatomy, which may in turn predict the experience of depressive symptoms in young adulthood.


Subject(s)
Depression , Prenatal Exposure Delayed Effects , Adult , Amygdala/diagnostic imaging , Amygdala/pathology , Child , Depression/psychology , Female , Humans , Infant, Newborn , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Pregnancy , Young Adult
11.
Soc Cogn Affect Neurosci ; 17(8): 703-711, 2022 08 01.
Article in English | MEDLINE | ID: mdl-34915569

ABSTRACT

In 54 participants (41% women) from the Czech arm of the European Longitudinal Study of Pregnancy and Childhood, a national birth cohort with prospectively collected data from their birth until young adulthood, we aimed to study the association between early-life socioeconomic deprivation (ELSD), cognitive ability in adolescence, trait anxiety and resting state functional connectivity of the lateral prefrontal cortex (LPFC) in young adulthood. We found that ELSD was associated with lower cognitive ability in adolescence (at age 13) as well as higher trait anxiety in young adulthood (at age 23/24). Higher cognitive ability in adolescence predicted lower trait anxiety in young adulthood. Resting state functional connectivity between the right LPFC and a cluster of voxels including left precentral gyrus, left postcentral gyrus and superior frontal gyrus mediated the relationship between lower cognitive ability in adolescence and higher trait anxiety in young adulthood. These findings indicate that lower cognitive ability and higher trait anxiety may be both consequences of socioeconomic deprivation in early life. The recruitment of the right LPFC may be the underlying mechanism, through which higher cognitive ability may ameliorate trait anxiety.


Subject(s)
Brain , Magnetic Resonance Imaging , Adolescent , Adult , Anxiety , Child , Cognition , Female , Humans , Longitudinal Studies , Male , Socioeconomic Factors , Young Adult
12.
Front Nutr ; 9: 1100237, 2022.
Article in English | MEDLINE | ID: mdl-36704790

ABSTRACT

Background: Biological aging and particularly the deviations between biological and chronological age are better predictors of health than chronological age alone. However, the predictors of accelerated biological aging are not very well understood. The aim was to determine the role of birth outcomes, time of puberty onset, body mass index (BMI), and body fat in accelerated biological aging in the third decade of life. Methods: We have conducted a second follow-up of the Czech part of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC-CZ) prenatal birth cohort in young adulthood (52% male; age 28-30; n = 262) to determine the role of birth outcomes, pubertal timing, BMI, and body fat on biological aging. Birth outcomes included birth weight, length, and gestational age at birth. Pubertal timing was determined by the presence of secondary sexual characteristics at the age of 11 and the age of first menarche in women. Biological age was estimated using the Klemera-Doubal Method (KDM), which applies 9-biomarker algorithm including forced expiratory volume in one second (FEV1), systolic blood pressure, glycated hemoglobin, total cholesterol, C-reactive protein, creatinine, urea nitrogen, albumin, and alkaline phosphatase. Accelerated/decelerated aging was determined as the difference between biological and chronological age (BioAGE). Results: The deviations between biological and chronological age in young adulthood ranged from -2.84 to 4.39 years. Accelerated biological aging was predicted by higher BMI [in both early (R2 adj = 0.05) and late 20s (R2 adj = 0.22)], subcutaneous (R2 adj = 0.21) and visceral fat (R2 adj = 0.25), puberty onset (η p 2 = 0.07), birth length (R2 adj = 0.03), and the increase of BMI over the 5-year period between the two follow-ups in young adulthood (R2 adj = 0.09). Single hierarchical model revealed that shorter birth length, early puberty onset, and greater levels of visceral fat were the main predictors, together explaining 21% of variance in accelerated biological aging. Conclusion: Our findings provide comprehensive support of the Life History Theory, suggesting that early life adversity might trigger accelerated aging, which leads to earlier onset of puberty but decreasing fitness in adulthood, reflected by more visceral fat and higher BMI. Our findings also suggest that reduction of BMI in young adulthood slows down biological aging.

13.
Neuroimage Clin ; 32: 102830, 2021.
Article in English | MEDLINE | ID: mdl-34560530

ABSTRACT

Longitudinal comorbidity of depression and cognitive impairment has been reported by number of epidemiological studies but the underlying mechanisms explaining the link between affective problems and cognitive decline are not very well understood. Imaging studies have typically investigated patients with major depressive disorder (MDD) and mild cognitive impairment (MCI) separately and thus have not identified a structural brain signature common to these conditions that may illuminate potentially targetable shared biological mechanisms. We performed a meta-analysis of. 48 voxel-based morphometry (VBM) studies of individuals with MDD, MCI, and age-matched controls and demonstrated that MDD and MCI patients had shared volumetric reductions in a number of regions including the insula, superior temporal gyrus (STG), inferior frontal gyrus, amygdala, hippocampus, and thalamus. We suggest that the shared volumetric reductions in the insula and STG might reflect communication deficits and infrequent participation in mentally or socially stimulating activities, which have been described as risk factors for both MCI and MDD. We also suggest that the disease-specific structural changes might reflect the disease-specific symptoms such as poor integration of emotional information, feelings of helplessness and worthlessness, and anhedonia in MDD. These findings could contribute to better understanding of the origins of MDD-MCI comorbidity and facilitate development of early interventions.


Subject(s)
Cognitive Dysfunction , Depressive Disorder, Major , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Depression , Depressive Disorder, Major/diagnostic imaging , Humans , Magnetic Resonance Imaging
14.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876747

ABSTRACT

Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.


Subject(s)
Connectome , Cytokines/blood , Prenatal Exposure Delayed Effects/diagnostic imaging , Stress, Psychological/diagnostic imaging , Adult , Female , Humans , Hypothalamus/diagnostic imaging , Magnetic Resonance Imaging , Male , Pregnancy , Sex Factors
16.
Soc Psychiatry Psychiatr Epidemiol ; 56(6): 1091-1101, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33420794

ABSTRACT

PURPOSE: We aimed to study sex differences in the association of childhood socioeconomic position (SEP) with later-life depressive symptoms, the mediating effect of education and explore regional differences across Europe. METHODS: The study included 58,851 participants (55% women, mean age 65 years) from the multicentre, population-based Survey on Health, Ageing and Retirement in Europe. Interviews were conducted in six waves and included measurements of childhood SEP (household characteristics at the age of 10) and depressive symptoms (EURO-D scale). Linear regression was used to study the association of childhood SEP with depressive symptoms, adjusting for covariates, and structural equation modelling assessed the mediating effect of education. RESULTS: In the fully adjusted model, higher childhood SEP was associated with lower depressive symptoms with a greater magnitude in women (B = - 0.07; 95% CI - 0.08, - 0.05) than in men (B = - 0.02; 95% CI - 0.03, - 0.00). Relative to men, childhood SEP had 3 times greater direct effect on depressive symptoms in women, and education had 3.7 times stronger mediating effect against childhood SEP. These associations and the sex differences were particularly pronounced in Southern, Central and Eastern Europe. CONCLUSION: Growing up in poor socioeconomic conditions is a stronger risk factor for the development of depressive symptoms for women than for men. Education may have a stronger preventive potential for women in reducing the adverse effects of childhood socioeconomic hardship. Central and Eastern European populations experience disproportionately higher risk of later-life depression due to lower SEP and greater sex differences.


Subject(s)
Depression , Sex Characteristics , Aged , Depression/epidemiology , Europe/epidemiology , Europe, Eastern , Female , Humans , Male , Social Class , Socioeconomic Factors
17.
Transl Psychiatry ; 10(1): 410, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33235204

ABSTRACT

Convergent data from imaging and postmortem brain transcriptome studies implicate corticolimbic circuit (CLC) dysregulation in the pathophysiology of depression. To more directly bridge these lines of work, we generated a novel transcriptome-based polygenic risk score (T-PRS), capturing subtle shifts toward depression-like gene expression patterns in key CLC regions, and mapped this T-PRS onto brain function and related depressive symptoms in a nonclinical sample of 478 young adults (225 men; age 19.79 +/- 1.24) from the Duke Neurogenetics Study. First, T-PRS was generated based on common functional SNPs shifting CLC gene expression toward a depression-like state. Next, we used multivariate partial least squares regression to map T-PRS onto whole-brain activity patterns during perceptual processing of social stimuli (i.e., human faces). For validation, we conducted a comparative analysis with a PRS summarizing depression risk variants identified by the Psychiatric Genomics Consortium (PGC-PRS). Sex was modeled as moderating factor. We showed that T-PRS was associated with widespread reductions in neural response to neutral faces in women and to emotional faces and shapes in men (multivariate p < 0.01). This female-specific reductions in neural response to neutral faces was also associated with PGC-PRS (multivariate p < 0.03). Reduced reactivity to neutral faces was further associated with increased self-reported anhedonia. We conclude that women with functional alleles mimicking the postmortem transcriptomic CLC signature of depression have blunted neural activity to social stimuli, which may be expressed as higher anhedonia.


Subject(s)
Facial Recognition , Transcriptome , Adolescent , Adult , Depression/genetics , Female , Humans , Male , Multifactorial Inheritance , Risk Factors , Young Adult
18.
Hum Brain Mapp ; 41(17): 4866-4875, 2020 12.
Article in English | MEDLINE | ID: mdl-33010202

ABSTRACT

Maternal stress during pregnancy and shortly thereafter is associated with altered offspring brain development that may increase risk of mood and anxiety disorders. Cortical gyrification is established during the prenatal period and the first 2 years of life and is altered in psychiatric disorders. Here, we sought to characterize the effects of perinatal stress exposure on offspring gyrification patterns and mood dysregulation in young adulthood. Participants included 85 young adults (56.5% women; 23-24 years) from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) with perinatal stress data across four distinct timepoints and structural MRI data from young adulthood. Perinatal stress exposure was measured as maternal stress during first and second half of pregnancy, first 6 months, and 6-18 months after birth. Cortical gyrification and mood dysregulation were quantified using local gyrification index (LGI), computed with Freesurfer, and the Profile of Mood States questionnaire, respectively. Perinatal stress predicted cortical gyrification in young adulthood, and its timing influenced location, direction, and sex-specificity of effects. In particular, whereas early prenatal stress was associated with sex-dependent medium-to-large effects in large temporal, parietal, and occipital regions (f2 = 0.19-0.38, p < .001), later perinatal stress was associated with sex-independent small-to-medium effects in smaller, more anterior regions (f2 = 0.10-0.19, p < .003). Moreover, in females, early prenatal stress predicted higher LGI in a large temporal region, which was further associated with mood disturbance in adulthood (r = 0.399, p = .006). These findings point out the long-term implications of perinatal stress exposure for cortical morphology and mood dysregulation.


Subject(s)
Affective Symptoms , Cerebral Cortex , Prenatal Exposure Delayed Effects , Stress, Psychological/complications , Adult , Affective Symptoms/diagnostic imaging , Affective Symptoms/etiology , Affective Symptoms/pathology , Affective Symptoms/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Emotional Regulation/physiology , Female , Humans , Infant , Infant, Newborn , Longitudinal Studies , Magnetic Resonance Imaging , Male , Postpartum Period , Pregnancy , Prenatal Exposure Delayed Effects/diagnostic imaging , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , Young Adult
19.
Neuropsychopharmacology ; 45(8): 1280-1288, 2020 07.
Article in English | MEDLINE | ID: mdl-32152473

ABSTRACT

Cardiac autonomic dysregulation has been implicated in the comorbidity of major psychiatric disorders and cardiovascular disease, potentially through dysregulation of physiological responses to negative stressful stimuli (here, shortened to stress response). Further, sex differences in these comorbidities are substantial. Here, we tested the hypothesis that mood- and sex-dependent alterations in brain circuitry implicated in the regulation of the stress response are associated with reduced peripheral parasympathetic activity during negative emotional arousal. Fifty subjects (28 females) including healthy controls and individuals with major depression, bipolar psychosis and schizophrenia were evaluated. Functional magnetic resonance imaging and physiology (cardiac pulse) data were acquired during a mild visual stress reactivity challenge. Associations between changes in activity and functional connectivity of the stress response circuitry and variations in cardiovagal activity [normalized high frequency power of heart rate variability (HFn)] were evaluated using GLM analyses, including interactions with depressed mood and sex across disorders. Our results revealed that in women with high depressed mood, lower cardiovagal activity in response to negative affective stimuli was associated with greater activation of hypothalamus and right amygdala and reduced connectivity between hypothalamus and right orbitofrontal cortex, amygdala, and hippocampus. No significant associations were observed in women with low levels of depressed mood or men. Our results revealed mood- and sex-dependent interactions in the central regulation of cardiac autonomic activity in response to negative affective stimuli. These findings provide a potential pathophysiological mechanism for previously observed sex differences in the comorbidity of major depression and cardiovascular disease.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Amygdala , Brain/diagnostic imaging , Female , Hippocampus , Humans , Male
20.
Cereb Cortex ; 30(7): 3991-3999, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32108225

ABSTRACT

Maternal depression during pregnancy is associated with elevated risk of anxiety and depression in offspring, but the mechanisms are incompletely understood. Here we conducted a neuroimaging follow-up of a prenatal birth cohort from the European Longitudinal Study of Pregnancy and Childhood (n = 131; 53% women, age 23-24) to test whether deviations from age-normative structural brain development in young adulthood may partially underlie this link. Structural brain age was calculated based on previously published neuroanatomical age prediction models using cortical thickness maps from healthy controls aged 6-89. Brain age gap was computed as the difference between chronological and structural brain age. Participants also completed self-report measures of anxiety and mood dysregulation. Further, mothers of a subset of participants (n = 103, 54% women) answered a self-report questionnaire in 1990-1992 about depressive symptoms during pregnancy. Higher exposure to maternal depressive symptoms in utero showed a linear relationship with elevated brain age gap, which showed a quadratic relationship with anxiety and mood dysregulation in the young adult offspring. Our findings suggest that exposure to maternal depressive symptoms in utero may be associated with accelerated brain maturation and that deviations from age-normative structural brain development in either direction predict more anxiety and dysregulated mood in young adulthood.


Subject(s)
Aging , Anxiety/diagnostic imaging , Brain/diagnostic imaging , Depression , Mood Disorders/diagnostic imaging , Pregnancy Complications , Prenatal Exposure Delayed Effects/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Anxiety/psychology , Brain Cortical Thickness , Child , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mood Disorders/psychology , Pregnancy , Prenatal Exposure Delayed Effects/psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...