Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 26(18): 23107-23118, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30184966

ABSTRACT

Single layer self-assembled InGaAs quantum dots (QDs) are manipulated by using different arsenic species on GaAs (100) surface. The As4 molecules are experimentally observed to be more promising than As2 to promote the formation of one-dimensionally-aligned QD-chain arrays. The lateral alignment of QDs and the corresponding formation of dot chains are explained by the anisotropic surface kinetics in combination with the different reactivities of the two molecules with bonding sites on the GaAs (100) surface. Photoluminescence (PL) measurements demonstrate that the spectra of the QD-chains broaden to higher energy and increases in intensity with increasing excitation laser power. The PL band of the QD-chains also exhibits a 9 meV reduction in linewidth as temperature increases starting from 8 K. These observations confirm an efficient lateral coupling between neighboring QDs and thereafter polarized QD emission, whereas the randomly distributed QDs grown with As2 show no preferential polarization. Such QD-chains exhibiting anisotropic properties have the potential for nanophotonics applications like electro-optic modulators with very low drive voltage and ultra-wide bandwidth operation.

2.
Nanoscale Res Lett ; 12(1): 183, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28282982

ABSTRACT

An experimental study of the photoconductivity time decay in InGaAs/GaAs quantum dot chain structures is reported. Different photoconductivity relaxations resulting from spectrally selecting photoexcitation of InGaAs QWR or QDs as well as GaAs spacers were measured. The photoconductivity relaxation after excitation of 650 nm follows a stretched exponent with decay constant dependent on morphology of InGaAs epitaxial layers. Kinetics with 980 nm excitation are successfully described by equation that takes into account the linear recombination involving Shockley-Read centers in the GaAs spacers and bimolecular recombination via quantum-size states of InGaAs QWRs or QDs.

3.
Sci Rep ; 6: 18464, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26725938

ABSTRACT

This manuscript reports on the interaction between (2)F5/2→(2)F7/2 radiative transition from Yb(3+) ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb(3+) emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb(3+) ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb(3+) ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity's quality factor (Q) and the coupling (g) between the nanoparticles and the Yb(3+) ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb(3+) ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance.

4.
Nanoscale ; 4(23): 7509-16, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23099560

ABSTRACT

A strong dependence of quantum dot (QD)-quantum well (QW) tunnel coupling on the energy band alignment is established in hybrid InAs/GaAs-In(x)Ga(1-x)As/GaAs dot-well structures by changing the QW composition to shift the QW energy through the QD wetting layer (WL) energy. Due to this coupling a rapid carrier transfer from the QW to the QD excited states takes place. As a result, the QW photoluminescence (PL) completely quenches at low excitation intensities. The threshold intensities for the appearance of the QW PL strongly depend on the relative position of the QW excitonic energy with respect to the WL ground state and the QD ground state energies. These intensities decrease by orders of magnitude as the energy of the QW increases to approach that of the WL due to the increased efficiency for carrier tunneling into the WL states as compared to the less dense QD states below the QW energy.

5.
Appl Opt ; 50(31): G11-6, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22086033

ABSTRACT

Silver and gold films with thicknesses in the range of 120-450 nm were evaporated onto glass substrates. A sequence of slits with widths varying between 70 and 270 nm was milled in the films using a focused gallium ion beam. We have undertaken high-resolution measurements of the optical transmission through the single slits with 488.0 nm (for Ag) and 632.8 nm (for Au) laser sources aligned to the optical axis of a microscope. Based on the present experimental results, it was possible to observe that (1) the slit transmission is notably affected by the film thickness, which presents a damped oscillatory behavior as the thickness is augmented, and (2) the transmission increases linearly with increasing slit width for a fixed film thickness.

6.
Nanotechnology ; 19(1): 015301, 2008 Jan 09.
Article in English | MEDLINE | ID: mdl-21730527

ABSTRACT

We demonstrate that nanomechanically stamped substrates can be used as templates to pattern and direct the self-assembly of epitaxial quantum structures such as quantum dots. Diamond probe tips are used to indent or stamp the surface of GaAs(100) to create nanoscale volumes of dislocation-mediated deformation, which alter the growth surface strain. These strained sites act to bias nucleation, hence allowing for selective growth of InAs quantum dots. Patterns of quantum dots are observed to form above the underlying nanostamped template. The strain state of the patterned structures is characterized by micro-Raman spectroscopy. The potential of using nanoprobe tips as a quantum dot nanofabrication technology are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...