Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(14): e2209371, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36644893

ABSTRACT

Monolayer MoS2 has attracted significant attention owing to its excellent performance as an n-type semiconductor from the transition metal dichalcogenide (TMDC) family. It is however strongly desired to develop controllable synthesis methods for 2D p-type MoS2 , which is crucial for complementary logic applications but remains difficult. In this work, high-quality NbS2 -MoS2 lateral heterostructures are synthesized by one-step metal-organic chemical vapor deposition (MOCVD) together with monolayer MoS2 substitutionally doped by Nb, resulting in a p-type doped behavior. The heterojunction shows a p-type transfer characteristic with a high on/off current ratio of ≈104 , exceeding previously reported values. The band structure through the NbS2 -MoS2 heterojunction is investigated by density functional theory (DFT) and quantum transport simulations. This work provides a scalable approach to synthesize substitutionally doped TMDC materials and provides an insight into the interface between 2D metals and semiconductors in lateral heterostructures, which is imperative for the development of next-generation nanoelectronics and highly integrated devices.

2.
ACS Nano ; 15(11): 18403-18410, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34756018

ABSTRACT

Metallic two-dimensional (2D) transition metal dichalcogenides (TMDCs) are attracting great attention because of their interesting low-temperature properties such as superconductivity, magnetism, and charge density waves (CDW). However, further studies and practical applications are being slowed down by difficulties in synthesizing high-quality materials with a large grain size and well-determined thickness. In this work, we demonstrate epitaxial chemical vapor deposition (CVD) growth of 2D NbS2 crystals on a sapphire substrate, with a thickness-dependent structural phase transition. NbS2 crystals are epitaxially aligned by the underlying c-plane sapphire resulting in high-quality growth. The thickness of NbS2 is well controlled by growth parameters to be between 1.5 and 10 nm with a large grain size of up to 500 µm. As the thickness increases, we observe in our NbS2 a transition from a metallic 3R-polytype to a superconducting 2H-polytype, confirmed by Raman spectroscopy, aberration-corrected scanning transmission electron microscopy (STEM) and electrical transport measurements. A Berezinskii-Kosterlitz-Thouless (BKT) superconducting transition occurs in the CVD-grown 2H-phase NbS2 below the transition temperature (Tc) of 3 K. Our work demonstrates thickness and phase-controllable synthesis of high-quality superconducting 2D NbS2, which is imperative for its practical applications in next-generation TMDC-based electrical devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...