Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Int J Biol Macromol ; 254(Pt 3): 127882, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951446

ABSTRACT

Tissue engineering is an advanced and potential biomedical approach to treat patients suffering from lost or failed an organ or tissue to repair and regenerate damaged tissues that increase life expectancy. The biopolymers have been used to fabricate smart hydrogels to repair damaged tissue as they imitate the extracellular matrix (ECM) with intricate structural and functional characteristics. These hydrogels offer desired and controllable qualities, such as tunable mechanical stiffness and strength, inherent adaptability and biocompatibility, swellability, and biodegradability, all crucial for tissue engineering. Smart hydrogels provide a superior cellular environment for tissue engineering, enabling the generation of cutting-edge synthetic tissues due to their special qualities, such as stimuli sensitivity and reactivity. Numerous review articles have presented the exceptional potential of hydrogels for various biomedical applications, including drug delivery, regenerative medicine, and tissue engineering. Still, it is essential to write a comprehensive review article on smart hydrogels that successfully addresses the essential challenging issues in tissue engineering. Hence, the recent development on smart hydrogel for state-of-the-art tissue engineering conferred progress, highlighting significant challenges and future perspectives. This review discusses recent advances in smart hydrogels fabricated from biological macromolecules and their use for advanced tissue engineering. It also provides critical insight, emphasizing future research directions and progress in tissue engineering.


Subject(s)
Hydrogels , Tissue Engineering , Humans , Hydrogels/chemistry , Regenerative Medicine , Extracellular Matrix/chemistry , Drug Delivery Systems
2.
Cell Mol Biol Lett ; 28(1): 98, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38031028

ABSTRACT

Alzheimer's disease (AD) is a chronic illness marked by increasing cognitive decline and nervous system deterioration. At this time, there is no known medication that will stop the course of Alzheimer's disease; instead, most symptoms are treated. Clinical trial failure rates for new drugs remain high, highlighting the urgent need for improved AD modeling for improving understanding of the underlying pathophysiology of disease and improving drug development. The development of induced pluripotent stem cells (iPSCs) has made it possible to model neurological diseases like AD, giving access to an infinite number of patient-derived cells capable of differentiating neuronal fates. This advance will accelerate Alzheimer's disease research and provide an opportunity to create more accurate patient-specific models of Alzheimer's disease to support pathophysiological research, drug development, and the potential application of stem cell-based therapeutics. This review article provides a complete summary of research done to date on the potential use of iPSCs from AD patients for disease modeling, drug discovery, and cell-based therapeutics. Current technological developments in AD research including 3D modeling, genome editing, gene therapy for AD, and research on familial (FAD) and sporadic (SAD) forms of the disease are discussed. Finally, we outline the issues that need to be elucidated and future directions for iPSC modeling in AD.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Induced Pluripotent Stem Cells/physiology , Drug Evaluation, Preclinical , Neurons , Drug Discovery
4.
Int J Biol Macromol ; 250: 126174, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37558025

ABSTRACT

Diabetic wounds are among the major healthcare challenges, consuming billions of dollars of resources and resulting in high numbers of morbidity and mortality every year. Lack of sufficient oxygen supply is one of the most dominant causes of impaired healing in diabetic wounds. Numerous clinical and experimental studies have demonstrated positive outcomes as a result of delivering oxygen at the diabetic wound site, including enhanced angiogenesis, antibacterial and cell proliferation activities. However, prolonged and sustained delivery of oxygen to improve the wound healing process has remained a major challenge due to rapid release of oxygen from oxygen sources and limited penetration of oxygen into deep skin tissues. Hydrogels made from sugar-based polymers such as chitosan and hyaluronic acid, and proteins such as gelatin, collagen and hemoglobin have been widely used to deliver oxygen in a sustained delivery mode. This review presents an overview of the recent advances in oxygen releasing hydrogel based patches as a therapeutic modality to enhance diabetic wound healing. Various types of oxygen releasing wound healing patch have been discussed along with their fabrication method, release profile, cytocompatibility and in vivo results. We also briefly discuss the challenges and prospects related to the application of oxygen releasing biomaterials as wound healing therapeutics.

6.
Cancer Cell Int ; 23(1): 64, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37038154

ABSTRACT

Cancer is still the leading cause of death globally. The approval of the therapeutic use of monoclonal antibodies against immune checkpoint molecules, notably those that target the proteins PD-1 and PD-L1, has changed the landscape of cancer treatment. In particular, first-line PD-1/PD-L1 inhibitor drugs are increasingly common for the treatment of metastatic cancer, significantly prolonging patient survival. Despite the benefits brought by immune checkpoint inhibitors (ICIs)-based therapy, the majority of patients had their diseases worsen following a promising initial response. To increase the effectiveness of ICIs and advance our understanding of the mechanisms causing cancer resistance, it is crucial to find new, effective, and tolerable combination treatments. In this article, we addressed the potential of ICIs for the treatment of solid tumors and offer some insight into the molecular pathways behind therapeutic resistance to ICIs. We also discuss cutting-edge therapeutic methods for reactivating T-cell responsiveness after resistance has been established.

7.
Biomedicines ; 11(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36831164

ABSTRACT

Given that CAR-T cell therapy is effective in CD19-positive blood malignancies, it offers great hope for a variety of aggressive tumors that have thus far shown very little response to available therapies [...].

9.
Biomedicines ; 10(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36009432

ABSTRACT

Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite available therapeutic interventions, it is very difficult to treat, and a cure is not yet available. The intra-tumoral GBM heterogeneity is a crucial factor contributing to poor clinical outcomes. GBM derives from a small heterogeneous population of cancer stem cells (CSCs). In cancer tissue, CSCs are concentrated within the so-called niches, where they progress from a slowly proliferating phase. CSCs, as most tumor cells, release extracellular vesicles (EVs) into the surrounding microenvironment. To explore the role of EVs in CSCs and GBM tumor cells, we investigated the miRNA and protein content of the small EVs (sEVs) secreted by two GBM-established cell lines and by GBM primary CSCs using omics analysis. Our data indicate that GBM-sEVs are selectively enriched for miRNAs that are known to display tumor suppressor activity, while their protein cargo is enriched for oncoproteins and tumor-associated proteins. Conversely, among the most up-regulated miRNAs in CSC-sEVs, we also found pro-tumor miRNAs and proteins related to stemness, cell proliferation, and apoptosis. Collectively, our findings support the hypothesis that sEVs selectively incorporate different miRNAs and proteins belonging both to fundamental processes (e.g., cell proliferation, cell death, stemness) as well as to more specialized ones (e.g., EMT, membrane docking, cell junction organization, ncRNA processing).

10.
Cancer Cell Int ; 22(1): 265, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35999629

ABSTRACT

The most common and aggressive primitive intracranial tumor of the central nervous system is the glioma. The blood-brain barrier (BBB) has proven to be a significant obstacle to the effective treatment of glioma. To effectively treat glioma, different ways have been used to cross the BBB to deliver drugs to the brain. Drug delivery through nanocarriers proves to be an effective and non-invasive technique for the treatment of glioma and has great potential in the treatment of glioma. In this review, we will provide an overview of nanocarrier-mediated drug delivery and related glioma therapy. Nanocarrier-mediated drug delivery techniques to cross the BBB (liposomes, micelles, inorganic systems, polymeric nanoparticles, nanogel system, and biomimetic nanoparticles) are explored. Finally, the use of nanotherapeutic approaches in the treatment of glioblastoma including chemotherapy, radiotherapy, photothermal therapy, gene therapy, glioma genome editing, immunotherapy, chimeric antigen receptor (CAR) T-cells, immune checkpoint modulators, immune photothermal therapy, vaccine-based immunotherapy, and combination therapy is summarized. Furthermore, this article offers various views on the clinical applicability of nanomedicine.

11.
Cancer Cell Int ; 22(1): 255, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35964048

ABSTRACT

The primary purpose of ADCs is to increase the efficacy of anticancer medications by minimizing systemic drug distribution and targeting specific cells. Antibody conjugates (ADCs) have changed the way cancer is treated. However, because only a tiny fraction of patients experienced long-term advantages, current cancer preclinical and clinical research has been focused on combination trials. The complex interaction of ADCs with the tumor and its microenvironment appear to be reliant on the efficacy of a certain ADC, all of which have significant therapeutic consequences. Several clinical trials in various tumor types are now underway to examine the potential ADC therapy, based on encouraging preclinical results. This review tackles the potential use of ADCs in cancer therapy, emphasizing the essential processes underlying their positive therapeutic impacts on solid and hematological malignancies. Additionally, opportunities are explored to understand the mechanisms of ADCs action, the mechanism of resistance against ADCs, and how to overcome potential resistance following ADCs administration. Recent clinical findings have aroused interest, leading to a large increase in the number of ADCs in clinical trials. The rationale behind ADCs, as well as their primary features and recent research breakthroughs, will be discussed. We then offer an approach for maximizing the potential value that ADCs can bring to cancer patients by highlighting key ideas and distinct strategies.

12.
Discov Oncol ; 13(1): 49, 2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35716231

ABSTRACT

EV produced by tumour cells carry a diverse population of proteins, lipids, DNA, and RNA molecules throughout the body and appear to play an important role in the overall development of the disease state, according to growing data. Gliomas account for a sizable fraction of all primary brain tumours and the vast majority of brain malignancies. Glioblastoma multiforme (GBM) is a kind of grade IV glioma that has a very dismal prognosis despite advancements in diagnostic methods and therapeutic options. The authors discuss advances in understanding the function of extracellular vesicles (EVs), in overall glioma growth, as well as how recent research is uncovering the utility of EVs in glioma diagnostics, prognostic and therapeutics approaches.

13.
Metab Brain Dis ; 37(4): 973-988, 2022 04.
Article in English | MEDLINE | ID: mdl-35075502

ABSTRACT

Rosemary oil (ROO) is known to have multiple pharmacological effects: it is an antioxidant, anti-inflammatory, and cytoprotective. In the present study, we examined the effects of ROO on Human olfactory bulb neuronal stem cells (hOBNSCs) after their transplantation into rats, with the ibotenic (IBO) acid-induced cognitive deficit model. After 7 weeks, cognitive functions were assessed using the Morris water maze (MWM). After two months blood and hippocampus samples were collected for biochemical, gene expression, and histomorphometric analyses. Learning ability and memory function were significantly enhanced (P < 0.05) after hOBNSCs transplantation and were nearly returned to normal in the treated group. The IBO acid injection was associated with a significant decline (P < 0.05) of total leukocyte count (TLC) and a significant increase (P < 0.05) in total and toxic neutrophils. As well, the level of IL-1ß, TNF-α CRP in serum and levels of MDA and NO in hippocampus tissue were significantly elevated (P < 0.05), while antioxidant markers (CAT, GSH, and SOD) were reduced (P < 0.05) in treated tissue compared to controls. The administration of ROO before or with cell transplantation attenuated all these parameters. In particular, the level of NO nearly returned to normal when rosemary was administrated before cell transplantation. Gene expression analysis revealed the potential protective effect of ROO and hOBNSCs via down-expression of R-ßAmyl and R- CAS 3 and R-GFAP genes. The improvement in the histological organization of the hippocampus was detected after the hOBNSCs transplantation especially in h/ROO/hOBNSCs group.


Subject(s)
Alzheimer Disease , Neural Stem Cells , Neurotoxicity Syndromes , Rosmarinus , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Antioxidants/therapeutic use , Dietary Supplements , Humans , Ibotenic Acid/metabolism , Ibotenic Acid/pharmacology , Ibotenic Acid/therapeutic use , Maze Learning , Neural Stem Cells/metabolism , Neurotoxicity Syndromes/metabolism , Oils, Volatile , Olfactory Bulb , Rats
14.
Cancer Cell Int ; 22(1): 9, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996478

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is a heterogeneous CNS neoplasm which causes significant morbidity and mortality. One reason for the poor prognostic outcome of GBM is attributed to the presence of cancer stem cells (CSC) which confer resistance against standard chemo- and radiotherapeutics modalities. Two types of GBM-associated CSC were isolated from the same patient: tumor core- (c-CSC) and peritumor tissue-derived cancer stem cells (p-CSC). Our experiments are focused on glioblastoma-IDH-wild type, and no disease-defining alterations were present in histone, BRAF or other genes. METHODS: In the present study, potential differences in genetic variants between c-CSC versus p-CSC derived from four GBM patients were investigated with the aims of (1) comparing the exome sequences between all the c-CSC or p-CSC to identify the common variants; (2) identifying the variants affecting the function of genes known to be involved in cancer origin and development. RESULTS: By comparative analyses, we identified common gene single nucleotide variants (SNV) in all GBM c-CSC and p-CSC, a potentially deleterious variant was a frameshift deletion at Gln461fs in the MLLT1 gene, that was encountered only in p-CSC samples with different allelic frequency. CONCLUSIONS: We discovered a potentially harmful frameshift deletion at Gln461fs in the MLLT1 gene. Further investigation is required to confirm the presence of the identified mutations in patient tissue samples, as well as the significance of the frameshift mutation in the MLLT1 gene on GBM biology and response to therapy based on genomic functional experiments.

15.
Cancer Cell Int ; 21(1): 703, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34952583

ABSTRACT

The p53 protein is a transcription factor known as the "guardian of the genome" because of its critical function in preserving genomic integrity. The TP53 gene is mutated in approximately half of all human malignancies, including those of the breast, colon, lung, liver, prostate, bladder, and skin. When DNA damage occurs, the TP53 gene on human chromosome 17 stops the cell cycle. If p53 protein is mutated, the cell cycle is unrestricted and the damaged DNA is replicated, resulting in uncontrolled cell proliferation and cancer tumours. Tumor-associated p53 mutations are usually associated with phenotypes distinct from those caused by the loss of the tumor-suppressing function exerted by wild-type p53protein. Many of these mutant p53 proteins have oncogenic characteristics, and therefore modulate the ability of cancer cells to proliferate, escape apoptosis, invade and metastasize. Because p53 deficiency is so common in human cancer, this protein is an excellent option for cancer treatment. In this review, we will discuss some of the molecular pathways by which mutant p53 proteins might perform their oncogenic activities, as well as prospective treatment methods based on restoring tumor suppressive p53 functions.

16.
Stem Cell Res ; 56: 102552, 2021 10.
Article in English | MEDLINE | ID: mdl-34634760

ABSTRACT

Alzheimer's disease (AD) is the major cause of dementia worldwide. Early-onset familial AD accounts for about 0.5% of all AD and is caused by single major gene mutations and autosomal dominant inheritance. An N141I missense mutation is associated with a significant increase in basal cell death and apoptosis. In this work we generated hiPSC from skin fibroblasts obtained from an AD patient carrying a N141I missense mutation in PSEN2. The generated iPSC colonies grew and were characterized by pluripotency marker staining; the N141I missense mutation was corrected using genome editing technology.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Alzheimer Disease/genetics , Gene Editing , Humans , Mutation , Mutation, Missense , Presenilin-1 , Presenilin-2/genetics
17.
Microsc Microanal ; : 1-9, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34351254

ABSTRACT

Autoimmune diseases play a critical role in the progression of infertility in both sexes and their severity has been reported to increase with age. However, few reports have discussed their effect on the morphological features of the testis. Therefore, we compared the morphological alterations in the testes of autoimmune model mice (MRL/MpJ-Faslpr) and the control strain (MRL/MpJ) with those of their background strain (C57BL/6N) at 3 and 6 months. Furthermore, we analyzed the changes in spermatocytes, Sertoli cells, immune cells, and Zonula occludens-1 junctional protein by immunohistochemical staining. The MRL/MpJ-Faslpr mice showed a significant increase in the serum Anti-double stranded DNA antibody level, relative spleen weight, and seminiferous luminal area when compared with other studied two strains. In contrast, a significant decrease in the relative testis weight, and numbers of both Sertoli, meiotic spermatocyte was observed in MRL/MpJ-Faslpr and MRL/MpJ mice compared with C57BL/6N mice especially at 6 months. Similarly, Zonula occludens-1 junctional protein positive cells showed a significant decrease in the same strains at 6 months. However, no immune cell infiltration could be observed among the studied three strains. Our findings suggest that the increase in autoimmune severity especially with age could lead to infertility through loss of spermatogenic and Sertoli cells, rather than the disturbance of the blood-testis barrier.

18.
Mol Biol Rep ; 48(9): 6513-6524, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34398427

ABSTRACT

We give a summary of SARS-genetic CoV-2's structure and evolution, as well as current attempts to develop efficient vaccine and treatment methods for SARS-CoV-2 infection, in this article. Most therapeutic strategies are based on repurposing of existing therapeutic agents used against various virus infections and focused mainly on inhibition of the virus replication cycle, enhancement of innate immunity, and alleviation of CRS caused by COVID-19. Currently, more than 100 clinical trials on COVID-19 aim to provide robust evidence on the efficacy of the currently available anti-SARS-CoV-2 antiviral substances, such as the nucleotide analogue remdesivir, the antimalarial drug chloroquine, and drugs directed against docking of SARS-CoV-2 to the membrane-associated angiotensin-converting enzyme 2 (ACE2) such as transmembrane protease serine 2 (TMPRSS2). The current vaccination campaign is ongoing worldwide using different types of vaccines such as Pfizer-BioNTech and Moderna, Johnson & Johnson, Oxford-AstraZeneca, Novavax, and others with efficacy ranging from 72-95%. In March 2021 Germany limited the use of the Oxford-AstraZeneca COVID-19 vaccine to people 60 years of age and older due to concerns that it may be causing blood clots. Further study and more data are needed to confirm the safety of different available vaccines.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Genetic Structures/genetics , Pandemics/prevention & control , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/pharmacology , COVID-19/virology , Humans , Vaccination/methods , COVID-19 Drug Treatment
19.
Cancer Med ; 10(15): 5019-5030, 2021 08.
Article in English | MEDLINE | ID: mdl-34145792

ABSTRACT

Glioblastoma multiforme (GBM) is one of the deadliest brain tumors with an unfavorable prognosis and overall survival of approximately 20 months following diagnosis. The current treatment for GBM includes surgical resections and chemo- and radiotherapeutic modalities, which are not effective. CAR-T immunotherapy has been proven effective for CD19-positive blood malignancies, and the application of CAR-T cell therapy for solid tumors including GBM offers great hope for this aggressive tumor which has a limited response to current treatments. CAR-T technology depends on the use of patient-specific T cells genetically engineered to express specific tumor-associated antigens (TAAs). Interaction of CAR-T cells with tumor cells triggers the destruction/elimination of these cells by the induction of cytotoxicity and the release of different cytokines. Despite the great promise of CAR-T cell-based therapy several challenges exist. These include the heterogeneity of GBM cancer cells, aberrant various signaling pathways involved in tumor progression, antigen escape, the hostile inhibitory GBM microenvironment, T cell dysfunction, blood-brain barrier, and defective antigen presentation. All need to be addressed before full application at the clinical level can begin. Herein we provide a focused review of the rationale for the use of different types of CAR-T cells (including FcγRs), the different GBM-associated antigens, the challenges still facing CAR-T-based therapy, and means to overcome such challenges. Finally, we enumerate currently completed and ongoing clinical trials, highlighting the different ways such trials are designed to overcome specific problems. Exploitation of the full potential of CAR-T cell therapy for GBM depends on their solution.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/therapeutic use , Antibodies, Bispecific/immunology , Antibodies, Bispecific/therapeutic use , Antigen Presentation , Antigens, Neoplasm/immunology , Blood-Brain Barrier , Brain Neoplasms/immunology , Cell Movement/immunology , Cell Movement/physiology , Clinical Trials as Topic , Disease Progression , ErbB Receptors/immunology , Forecasting , Glioblastoma/immunology , Humans , Immune Checkpoint Inhibitors/metabolism , Immunotherapy, Adoptive/adverse effects , Interleukin-13 Receptor alpha2 Subunit/immunology , Lymphocyte Activation , Lymphocyte Depletion , Receptor, ErbB-2/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/therapeutic use , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/physiology , Tumor Escape , Tumor Microenvironment/immunology
20.
Biomed Pharmacother ; 140: 111747, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34044276

ABSTRACT

Management of non-healing and slow to heal diabetic wounds is a major concern in healthcare across the world. Numerous techniques have been investigated to solve the issue of delayed wound healing, though, mostly unable to promote complete healing of diabetic wounds due to the lack of proper cell proliferation, poor cell-cell communication, and higher chances of wound infections. These challenges can be minimized by using hydrogel based wound healing patches loaded with bioactive agents. Gelatin methacrylate (GelMA) has been proven to be a highly cell friendly, cell adhesive, and inexpensive biopolymer for various tissue engineering and wound healing applications. In this study, S-Nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was incorporated in a highly porous GelMA hydrogel patch to improve cell proliferation, facilitate rapid cell migration, and enhance diabetic wound healing. We adopted a visible light crosslinking method to fabricate this highly porous biodegradable but relatively stable patch. Developed patches were characterized for morphology, NO release, cell proliferation and migration, and diabetic wound healing in a rat model. The obtained results indicate that SNAP loaded visible light crosslinked GelMA hydrogel patches can be highly effective in promoting diabetic wound healing.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Gelatin/administration & dosage , Hydrogels/administration & dosage , Methacrylates/administration & dosage , Nitric Oxide Donors/administration & dosage , S-Nitroso-N-Acetylpenicillamine/administration & dosage , Wound Healing/drug effects , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Gelatin/chemistry , Hydrogels/chemistry , Light , Methacrylates/chemistry , Nitric Oxide/chemistry , Nitric Oxide Donors/chemistry , Rats, Sprague-Dawley , S-Nitroso-N-Acetylpenicillamine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...