Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Vaccin Immunother ; 20(1): 2309693, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38330990

ABSTRACT

ER+ breast cancers (BC) are characterized by the elevated expression and signaling of estrogen receptor alpha (ESR1), which renders them sensitive to anti-endocrine therapy. While these therapies are clinically effective, prolonged treatment inevitably results in therapeutic resistance, which can occur through the emergence of gain-of-function mutations in ESR1. The central importance of ESR1 and development of mutated forms of ESR1 suggest that vaccines targeting these proteins could potentially be effective in preventing or treating endocrine resistance. To explore the potential of this approach, we developed several recombinant vaccines encoding different mutant forms of ESR1 (ESR1mut) and validated their ability to elicit ESR1-specific T cell responses. We then developed novel ESR1mut-expressing murine mammary cancer models to test the anti-tumor potential of ESR1mut vaccines. We found that these vaccines could suppress tumor growth, ESR1mut expression and estrogen signaling in vivo. To illustrate the applicability of these findings, we utilize HPLC to demonstrate the presentation of ESR1 and ESR1mut peptides on human ER+ BC cell MHC complexes. We then show the presence of human T cells reactive to ESR1mut epitopes in an ER+ BC patient. These findings support the development of ESR1mut vaccines, which we are testing in a Phase I clinical trial.


Subject(s)
Breast Neoplasms , Vaccines , Humans , Animals , Mice , Female , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Mutation , Estrogens/therapeutic use , Signal Transduction , Vaccines/therapeutic use
2.
J Pathol ; 260(1): 43-55, 2023 05.
Article in English | MEDLINE | ID: mdl-36752189

ABSTRACT

Neuroendocrine (NE) cells comprise ~1% of epithelial cells in benign prostate and prostatic adenocarcinoma (PCa). However, they become enriched in hormonally treated and castration-resistant PCa (CRPC). In addition, close to 20% of hormonally treated tumors recur as small cell NE carcinoma (SCNC), composed entirely of NE cells, which may be the result of clonal expansion or lineage plasticity. Since NE cells do not express androgen receptors (ARs), they are resistant to hormonal therapy and contribute to therapy failure. Here, we describe the identification of glypican-3 (GPC3) as an oncofetal cell surface protein specific to NE cells in prostate cancer. Functional studies revealed that GPC3 is critical to the viability of NE tumor cells and tumors displaying NE differentiation and that it regulates calcium homeostasis and signaling. Since our results demonstrate that GPC3 is specifically expressed by NE cells, patients with confirmed SCNC may qualify for GPC3-targeted therapy which has been developed in the context of liver cancer and displays minimal toxicity due to its tumor-specific expression. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Adenocarcinoma , Neuroendocrine Cells , Prostatic Neoplasms , Male , Humans , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Glypicans/metabolism , Adenocarcinoma/pathology , Neoplasm Recurrence, Local/pathology , Prostatic Neoplasms/pathology , Biomarkers/metabolism
3.
Mol Neurobiol ; 58(2): 483-489, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32970242

ABSTRACT

Longevity-associated neurological disorders have been observed across human and canine aging populations. Alzheimer's disease (AD) and canine cognitive dysfunction syndrome (CDS) represent comparable diseases affecting both species as they age. Translational diagnostic and therapeutic research is needed for these incurable diseases. The amyloid ß (Aß) peptide family are AD-associated peptides with identical amino acid sequences between dogs and humans. Plasma Aß42 concentration increases with age and decreases with AD in humans, and cerebrospinal fluid (CSF) concentration decreases in AD and correlates inversely with the amyloid load within the brain. Similarly, CSF Aß42 concentrations decrease in dogs with CDS but there is limited and conflicting information on plasma Aß42 concentrations in aging dogs and dogs with CDS. We measured plasma concentrations of Aß42 and Aß40 with an ultrasensitive single-molecule array assay (SIMOA) in a population of healthy aging dogs of different life stages (n = 36) and dogs affected with CDS (n = 11). In addition, the ratio of Aß42/ß40 was calculated. The mean plasma concentrations of Aß42 and Aß40 increased significantly with age (r2 = 0.27, p = 0.001; and r2 = 0.42, p < 0.001, respectively) and with life stage: puppy/junior group (0.43-2 years): 1.23 ± 0.95 and 38.26 ± 49.43 pg/mL; adult/mature group (2.1-9 years): 10.99 ± 5.45 and 131.05 ± 80.17 pg/mL; geriatric/senior group (9.3-14.5 years): 18.65 ± 16.65 and 192.88 ± 146.38 pg/mL, respectively. Concentrations of Aß42 and Aß40 in dogs with CDS (11.0-15.6 years) were significantly lower than age-matched healthy dogs at 11.61 ± 6.39 and 150.23 ± 98.2 pg/mL (p = 0.0048 and p = 0.001), respectively. Our findings suggest the dynamics of canine plasma amyloid concentrations are analogous to that found in aging humans with and without AD.


Subject(s)
Aging/blood , Amyloid beta-Peptides/blood , Cognitive Dysfunction/blood , Dogs/blood , Pets/blood , Animals , Female , Male
4.
Cancer Res ; 80(15): 3088-3100, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32366475

ABSTRACT

IL26 is a unique amphipathic member of the IL10 family of cytokines that participates in inflammatory signaling through a canonical receptor pathway. It also directly binds DNA to facilitate cellular transduction and intracellular inflammatory signaling. Although IL26 has almost no described role in cancer, our in vivo screen of inflammatory and cytokine pathway genes revealed IL26 to be one of the most significant inflammatory mediators of mammary engraftment and lung metastatic growth in triple-negative breast cancer (TNBC). Examination of human breast cancers demonstrated elevated IL26 transcripts in TNBC specimens, specifically in tumor cells as well as in Th17 CD4+ T cells within clinical TNBC specimens. IL26 did not have an autocrine effect on human TNBC cells, but rather its effect on engraftment and growth in vivo required neutrophils. IL26 enhanced mouse-derived DNA induction of inflammatory cytokines, which were collectively important for mammary and metastatic lung engraftment. To neutralize this effect, we developed a novel IL26 vaccine to stimulate antibody production and suppress IL26-enhanced engraftment in vivo, suggesting that targeting this inflammatory amplifier could be a unique means to control cancer-promoting inflammation in TNBC and other autoimmune diseases. Thus, we identified IL26 as a novel key modulator of TNBC metastasis and a potential therapeutic target in TNBC as well as other diseases reliant upon IL26-mediated inflammatory stimulation. SIGNIFICANCE: These findings identify IL26 as a unique, clinically relevant, inflammatory amplifier that enhances TNBC engraftment and dissemination in association with neutrophils, which has potential as a therapeutic target. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/15/3088/F1.large.jpg.


Subject(s)
Cell Adhesion , Interleukins/physiology , Neoplasm Transplantation , Neutrophils/physiology , Triple Negative Breast Neoplasms/pathology , Animals , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cells, Cultured , DNA, Neoplasm/drug effects , DNA, Neoplasm/metabolism , Disease Progression , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Inflammation Mediators/pharmacology , Inflammation Mediators/physiology , Interleukins/genetics , Interleukins/pharmacology , Mice , Mice, Inbred C57BL , Mice, SCID , Neoplasm Transplantation/immunology , Neoplasm Transplantation/pathology , Neutrophils/pathology , Triple Negative Breast Neoplasms/genetics , Xenograft Model Antitumor Assays
5.
Mol Neurobiol ; 57(7): 3143-3149, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32472519

ABSTRACT

Age is a primary risk factor for multiple comorbidities including neurodegenerative diseases. Pet dogs and humans represent two populations that have experienced a significant increase in average life expectancy over the last century. A higher prevalence of age-related neurodegenerative diseases has been observed across both species, and human diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), have canine analogs, canine cognitive dysfunction (CCD), and degenerative myelopathy (DM) respectively. In humans, protein biomarkers have proved useful in the prediction and diagnosis of neurodegeneration. Molecular signatures of many proteins are highly conserved across species. In this study, we explored the potential of the neuronal cytoskeletal protein neurofilament light chain (NfL) as a biomarker of neuro-aging in dogs using an ultrasensitive single-molecule array assay to measure plasma concentrations. Healthy dogs of different ages and dogs affected with CCD and DM were evaluated. The mean plasma NfL concentrations in the different age groups of the healthy population were as follows: 4.55 ± 1.70 pg/mL in puppy/junior group (0.43-2 years), 13.51 ± 6.8 pg/mL in adult/mature group (2.1-9 years), and 47.1 ± 12.68 pg/mL in geriatric/senior group (9.3-14.5 years). Concentrations in dogs with DM (7.5-12.6 years) and CCD (11.0-15.6 years) were 84.17 ± 53.57 pg/mL and 100.73 ± 83.72 pg/mL, respectively. Plasma NfL increases in an age-dependent manner and is significantly elevated in dogs diagnosed with neurodegenerative disease. This work identified plasma NfL as a key clinical index of neuro-aging and neurodegeneration in pet dogs. Our findings mirror recent reports from human neurodegenerative diseases.


Subject(s)
Aging/blood , Dog Diseases/diagnosis , Neurodegenerative Diseases/veterinary , Neurofilament Proteins/blood , Animals , Biomarkers/blood , Dog Diseases/blood , Dogs , Female , Male , Neurodegenerative Diseases/blood , Neurodegenerative Diseases/diagnosis
6.
Blood Transfus ; 18(3): 200-207, 2020 05.
Article in English | MEDLINE | ID: mdl-32203007

ABSTRACT

BACKGROUND: Red blood cell (RBC) exchange (RCE) transfusion therapy is indicated for certain patients with sickle cell disease (SCD). Although beneficial, this therapy is costly and inconvenient to patients, who may require it monthly or more often. Identification of blood and plasma biomarkers that could improve or help individualise RCE therapy is of interest. Here we examined relevant blood and plasma metabolites and biomarkers of vasoactivity and RBC fragility in a pilot study of SCD patients undergoing RCE using either standard RBC units or RBC units treated with a US Food and Drug Administration (FDA)-approved additive solution containing phosphate, inosine, pyruvate, and adenine ("PIPA"). MATERIALS AND METHODS: In this prospective, single-blind, cross-over pilot clinical trial, patients were randomised to receive either standard RBC exchange or PIPA-treated RBC exchange transfusion with each RCE session over a 6-month treatment period. Pre- and post-transfusion blood samples were obtained and analysed for RBC O2 affinity, ATP, purine metabolites, RBC microparticles, and cell free haemoglobin. RESULTS: Red blood cell O2 affinity was maintained after PIPA-RCE in contrast to standard RCE, after which P50 fell (net O2 affinity rose). Plasma ATP did not change significantly after RCE using either of the RBC unit types. Exchange transfusion with PIPA-treated RBC units led to modest increases in plasma inosine and hypoxanthine. Plasma cell free haemoglobin fell after either standard or PIPA-treated RBC exchange transfusion (novel findings), and to a similar extent. RBC-derived microparticles in the plasma fell significantly and similarly after both standard and PIPA-treated RCE transfusion. DISCUSSION: In summary, treatment of RBCs with PIPA prior to RCE elicited favourable or neutral changes in key metabolic and vascular biomarkers. Further study of its efficacy and safety is recommended and could ultimately serve to improve outcomes in chronically transfused SCD patients.


Subject(s)
Anemia, Sickle Cell , Blood Preservation , Erythrocyte Transfusion , Plasma/metabolism , Adult , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/therapy , Cross-Over Studies , Humans , Male , Pilot Projects , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...