Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 10(7)2022 07.
Article in English | MEDLINE | ID: mdl-35858707

ABSTRACT

BACKGROUND: Bintrafusp alfa (BA) is a bifunctional fusion protein designed for colocalized, simultaneous inhibition of two immunosuppressive pathways, transforming growth factor-ß (TGF-ß) and programmed death-ligand 1 (PD-L1), within the tumor microenvironment (TME). We hypothesized that targeting PD-L1 to the tumor by BA colocalizes the TGF-ß trap (TGF-ßRII) to the TME, enabling it to sequester TGF-ß in the tumor more effectively than systemic TGF-ß blockade, thereby enhancing antitumor activity. METHODS: Multiple technologies were used to characterize the TGF-ß trap binding avidity. BA versus combinations of anti-PD-L1 and TGF-ß trap or the pan-TGF-ß antibody fresolimumab were compared in proliferation and two-way mixed lymphocyte reaction assays. Immunophenotyping of tumor-infiltrating lymphocytes (TILs) and RNA sequencing (RNAseq) analysis assessing stromal and immune landscape following BA or the combination therapy were performed in MC38 tumors. TGF-ß and PD-L1 co-expression and their associated gene signatures in MC38 tumors and human lung carcinoma tissue were studied with single-cell RNAseq (scRNAseq) and immunostaining. BA-induced internalization, degradation, and depletion of TGF-ß were investigated in vitro. RESULTS: BA and fresolimumab had comparable intrinsic binding to TGF-ß1, but there was an ~80× avidity-based increase in binding affinity with BA. BA inhibited cell proliferation in TGF-ß-dependent and PD-L1-expressing cells more potently than TGF-ß trap or fresolimumab. Compared with the combination of anti-PD-L1 and TGF-ß trap or fresolimumab, BA enhanced T cell activation in vitro and increased TILs in MC38 tumors, which correlated with efficacy. BA induced distinct gene expression in the TME compared with the combination therapy, including upregulation of immune-related gene signatures and reduced activities in TGF-ß-regulated pathways, such as epithelial-mesenchymal transition, extracellular matrix deposition, and fibrosis. Regulatory T cells, macrophages, immune cells of myeloid lineage, and fibroblasts were key PD-L1/TGF-ß1 co-expressing cells in the TME. scRNAseq analysis suggested BA modulation of the macrophage phenotype, which was confirmed by histological assessment. PD-L1/TGF-ß1 co-expression was also seen in human tumors. Finally, BA induced TGF-ß1 internalization and degradation in the lysosomes. CONCLUSION: BA more effectively blocks TGF-ß by targeting TGF-ß trap to the tumor via PD-L1 binding. Such colocalized targeting elicits distinct and superior antitumor responses relative to single agent combination therapy.


Subject(s)
Lung Neoplasms , Transforming Growth Factor beta , B7-H1 Antigen , Humans , Immunologic Factors , Programmed Cell Death 1 Receptor , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1 , Tumor Microenvironment
2.
Mol Cancer Res ; 20(4): 568-582, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34980594

ABSTRACT

Radiotherapy is the most widely used cancer treatment and improvements in its efficacy and safety are highly sought-after. Peposertib (also known as M3814), a potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor, effectively suppresses the repair of radiation-induced DNA double-strand breaks (DSB) and regresses human xenograft tumors in preclinical models. Irradiated cancer cells devoid of p53 activity are especially sensitive to the DNA-PK inhibitor, as they lose a key cell-cycle checkpoint circuit and enter mitosis with unrepaired DSBs, leading to catastrophic consequences. Here, we show that inhibiting the repair of DSBs induced by ionizing radiation with peposertib offers a powerful new way for improving radiotherapy by simultaneously enhancing cancer cell killing and response to a bifunctional TGFß "trap"/anti-PD-L1 cancer immunotherapy. By promoting chromosome misalignment and missegregation in p53-deficient cancer cells with unrepaired DSBs, DNA-PK inhibitor accelerated micronuclei formation, a key generator of cytosolic DNA and activator of cGAS/STING-dependent inflammatory signaling as it elevated PD-L1 expression in irradiated cancer cells. Triple combination of radiation, peposertib, and bintrafusp alfa, a fusion protein simultaneously inhibiting the profibrotic TGFß and immunosuppressive PD-L1 pathways was superior to dual combinations and suggested a novel approach to more efficacious radioimmunotherapy of cancer. IMPLICATIONS: Selective inhibition of DNA-PK in irradiated cancer cells enhances inflammatory signaling and activity of dual TGFß/PD-L1 targeted therapy and may offer a more efficacious combination option for the treatment of locally advanced solid tumors.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , B7-H1 Antigen/metabolism , DNA , Humans , Immunotherapy , Neoplasms/drug therapy , Neoplasms/radiotherapy , Protein Kinase Inhibitors/pharmacology , Pyridazines , Quinazolines , Transforming Growth Factor beta
3.
Transl Oncol ; 16: 101322, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34954456

ABSTRACT

Combinatorial immunotherapy approaches are emerging as viable cancer therapeutic strategies for improving patient responses and outcomes. This study investigated whether two such immunotherapies, with complementary mechanisms of action, could enhance antitumor activity in murine tumor models. The immunocytokine NHS-IL12, and surrogate NHS-muIL12, are designed to deliver IL-12 and muIL-12, respectively, to the tumor microenvironment (TME) to activate NK cells and CD8+ T cells and increase their cytotoxic functions. Bintrafusp alfa (BA) is a bifunctional fusion protein composed of the extracellular domains of the TGF-ß receptor II to function as a TGF-ß "trap" fused to a human IgG1 antibody blocking PD-L1. With this dual-targeting strategy, BA enhances efficacy over that of monotherapies in preclinical studies. In this study, NHS-muIL12 and BA combination therapy enhanced antitumor activity, prolonged survival, and induced tumor-specific antitumor immunity. This combination therapy increased tumor-specific CD8+ T cells and induced immune profiles, consistent with the activation of both adaptive and innate immune systems. In addition, BA reduced lung metastasis in the 4T1 model. Collectively, these findings could support clinical trials designed to investigate NHS-IL12 and BA combination therapy for patients with advanced solid tumors.

4.
Cancer Cell ; 39(10): 1388-1403.e10, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34506739

ABSTRACT

Localized radiotherapy (RT) induces an immunogenic antitumor response that is in part counterbalanced by activation of immune evasive and tissue remodeling processes, e.g., via upregulation of programmed cell death-ligand 1 (PD-L1) and transforming growth factor ß (TGF-ß). We report that a bifunctional fusion protein that simultaneously inhibits TGF-ß and PD-L1, bintrafusp alfa (BA), effectively synergizes with radiotherapy, leading to superior survival in multiple therapy-resistant murine tumor models with poor immune infiltration. The BA + RT (BART) combination increases tumor-infiltrating leukocytes, reprograms the tumor microenvironment, and attenuates RT-induced fibrosis, leading to reconstitution of tumor immunity and regression of spontaneous lung metastases. Consistently, the beneficial effects of BART are in part reversed by depletion of cytotoxic CD8+ T cells. Intriguingly, targeting of the TGF-ß trap to PD-L1+ endothelium and the M2/lipofibroblast-like cell compartment by BA attenuated late-stage RT-induced lung fibrosis. Together, the results suggest that the BART combination has the potential to eradicate therapy-resistant tumors while sparing normal tissue, further supporting its clinical translation.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immune Evasion/immunology , Neoplasms/drug therapy , Neoplasms/radiotherapy , Transforming Growth Factor beta/metabolism , Animals , Humans , Immune Checkpoint Inhibitors/pharmacology , Mice , Tumor Microenvironment
5.
Sci Transl Med ; 10(424)2018 01 17.
Article in English | MEDLINE | ID: mdl-29343622

ABSTRACT

Antibodies targeting immune checkpoints are emerging as potent and viable cancer therapies, but not all patients respond to these as single agents. Concurrently targeting additional immunosuppressive pathways is a promising approach to enhance immune checkpoint blockade, and bifunctional molecules designed to target two pathways simultaneously may provide a strategic advantage over the combination of two single agents. M7824 (MSB0011359C) is a bifunctional fusion protein composed of a monoclonal antibody against programmed death ligand 1 (PD-L1) fused to the extracellular domain of human transforming growth factor-ß (TGF-ß) receptor II, which functions as a "trap" for all three TGF-ß isoforms. We demonstrate that M7824 efficiently, specifically, and simultaneously binds PD-L1 and TGF-ß. In syngeneic mouse models, M7824 suppressed tumor growth and metastasis more effectively than treatment with either an anti-PD-L1 antibody or TGF-ß trap alone; furthermore, M7824 extended survival and conferred long-term protective antitumor immunity. Mechanistically, the dual anti-immunosuppressive function of M7824 resulted in activation of both the innate and adaptive immune systems, which contributed to M7824's antitumor activity. Finally, M7824 was an effective combination partner for radiotherapy or chemotherapy in mouse models. Collectively, our preclinical data demonstrate that simultaneous blockade of the PD-L1 and TGF-ß pathways by M7824 elicits potent and superior antitumor activity relative to monotherapies.


Subject(s)
Antibodies, Monoclonal/immunology , Programmed Cell Death 1 Receptor/immunology , Transforming Growth Factor beta/immunology , Animals , Antibodies, Monoclonal/chemistry , Immunotherapy/methods , Mice , Programmed Cell Death 1 Receptor/chemistry , Transforming Growth Factor beta/chemistry
6.
Clin Cancer Res ; 23(19): 5869-5880, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28679778

ABSTRACT

Purpose: To determine whether combination therapy with NHS-muIL12 and the anti-programmed death ligand 1 (PD-L1) antibody avelumab can enhance antitumor efficacy in preclinical models relative to monotherapies.Experimental Design: BALB/c mice bearing orthotopic EMT-6 mammary tumors and µMt- mice bearing subcutaneous MC38 tumors were treated with NHS-muIL12, avelumab, or combination therapy; tumor growth and survival were assessed. Tumor recurrence following remission and rechallenge was evaluated in EMT-6 tumor-bearing mice. Immune cell populations within spleen and tumors were evaluated by FACS and IHC. Immune gene expression in tumor tissue was profiled by NanoString® assay and plasma cytokine levels were determined by multiplex cytokine assay. The frequency of tumor antigen-reactive IFNγ-producing CD8+ T cells was evaluated by ELISpot assay.Results: NHS-muIL12 and avelumab combination therapy enhanced antitumor efficacy relative to either monotherapy in both tumor models. Most EMT-6 tumor-bearing mice treated with combination therapy had complete tumor regression. Combination therapy also induced the generation of tumor-specific immune memory, as demonstrated by protection against tumor rechallenge and induction of effector and memory T cells. Combination therapy enhanced cytotoxic NK and CD8+ T-cell proliferation and T-bet expression, whereas NHS-muIL12 monotherapy induced CD8+ T-cell infiltration into the tumor. Combination therapy also enhanced plasma cytokine levels and stimulated expression of a greater number of innate and adaptive immune genes compared with either monotherapy.Conclusions: These data indicate that combination therapy with NHS-muIL12 and avelumab increased antitumor efficacy in preclinical models, and suggest that combining NHS-IL12 and avelumab may be a promising approach to treating patients with solid tumors. Clin Cancer Res; 23(19); 5869-80. ©2017 AACR.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Breast Neoplasms/drug therapy , Immunoglobulin G/administration & dosage , Immunotherapy , Interleukin-12/immunology , Recombinant Fusion Proteins/administration & dosage , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Combined Modality Therapy , Female , Humans , Immunoglobulin G/immunology , Interleukin-12/administration & dosage , Interleukin-12/genetics , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Recombinant Fusion Proteins/immunology
7.
J Immunol ; 194(3): 878-82, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25548231

ABSTRACT

CD4(+) regulatory T cells (Tregs) are critical for maintaining self-tolerance and function to prevent autoimmune disease. High densities of intratumoral Tregs are generally associated with poor patient prognosis, a correlation attributed to their broad immune-suppressive features. Two major populations of Tregs have been defined, thymically derived natural Tregs (nTregs) and peripherally induced Tregs (iTregs). However, the relative contribution of nTregs versus iTregs to the intratumoral Treg compartment remains controversial. Demarcating the proportion of nTregs versus iTregs has important implications in the design of therapeutic strategies to overcome their antagonistic effects on antitumor immune responses. We used epigenetic, phenotypic, and functional parameters to evaluate the composition of nTregs versus iTregs isolated from mouse tumor models and primary human tumors. Our findings failed to find evidence for extensive intratumoral iTreg induction. Rather, we identified a population of Foxp3-stable nTregs in tumors from mice and humans.


Subject(s)
Epigenesis, Genetic , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Antigens, Surface/metabolism , Cell Line, Tumor , CpG Islands , DNA Methylation , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Humans , Immunophenotyping , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Transgenic , Neoplasms/metabolism , Transforming Growth Factor beta/metabolism
8.
Protein Eng Des Sel ; 18(3): 111-8, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15820978

ABSTRACT

Erythropoietin (Epo) is a cytokine that controls the production of red blood cells (RBCs). Epo acts continuously on RBC precursors to prevent apoptosis, so it is important to maintain high levels of Epo activity when treating anemic patients. We describe here modified human Epo [Epo(NDS)] with mutations His32Gly, Cys33Pro, Trp88Cys and Pro90Ala that result in the rearrangement of the disulfide bonding pattern from Cys29-Cys33 to Cys29-Cys88 and that, in the context of an Fc-Epo(NDS) fusion protein, lead to significantly improved properties. Fc-Epo was secreted from NS/0 myeloma cells as about 35% high molecular weight aggregates, was unstable upon removal of N-linked oligosaccharides and showed poor pharmacokinetics and little efficacy in mice. In contrast, a corresponding Fc-Epo(NDS) was secreted almost exclusively as a unit dimer, was relatively stable to removal of N-linked oligosaccharides, had much improved pharmacokinetic properties and had a significantly improved effect on RBC production. These results indicate that rearrangement of the disulfide bonding pattern in a therapeutic protein can have a significant effect on pharmacokinetics and, potentially, the dosing schedule of a protein drug.


Subject(s)
Erythropoietin/chemistry , Erythropoietin/pharmacokinetics , Protein Engineering/methods , Receptors, Fc/chemistry , Amino Acid Sequence , Animals , Apoptosis , Cattle , Cell Line, Tumor , Chromatography, High Pressure Liquid , Codon , Computer Simulation , Cysteine/chemistry , Dimerization , Disulfides/chemistry , Erythropoietin/genetics , Glycosylation , Humans , Kinetics , Mice , Models, Molecular , Molecular Sequence Data , Mutation , Oligosaccharides/chemistry , Peptides/chemistry , Protein Conformation , Protein Folding , Protein Structure, Tertiary , Rats , Receptors, Fc/genetics , Recombinant Fusion Proteins/chemistry , Sequence Homology, Amino Acid , Time Factors , Transfection , Trypsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...