Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 9(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37888340

ABSTRACT

Data augmentation is a fundamental technique in machine learning that plays a crucial role in expanding the size of training datasets. By applying various transformations or modifications to existing data, data augmentation enhances the generalization and robustness of machine learning models. In recent years, the development of several libraries has simplified the utilization of diverse data augmentation strategies across different tasks. This paper focuses on the exploration of the most widely adopted libraries specifically designed for data augmentation in computer vision tasks. Here, we aim to provide a comprehensive survey of publicly available data augmentation libraries, facilitating practitioners to navigate these resources effectively. Through a curated taxonomy, we present an organized classification of the different approaches employed by these libraries, along with accompanying application examples. By examining the techniques of each library, practitioners can make informed decisions in selecting the most suitable augmentation techniques for their computer vision projects. To ensure the accessibility of this valuable information, a dedicated public website named DALib has been created. This website serves as a centralized repository where the taxonomy, methods, and examples associated with the surveyed data augmentation libraries can be explored. By offering this comprehensive resource, we aim to empower practitioners and contribute to the advancement of computer vision research and applications through effective utilization of data augmentation techniques.

2.
Sensors (Basel) ; 22(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35632241

ABSTRACT

In the last few years, Augmented Reality, Virtual Reality, and Artificial Intelligence (AI) have been increasingly employed in different application domains. Among them, the retail market presents the opportunity to allow people to check the appearance of accessories, makeup, hairstyle, hair color, and clothes on themselves, exploiting virtual try-on applications. In this paper, we propose an eyewear virtual try-on experience based on a framework that leverages advanced deep learning-based computer vision techniques. The virtual try-on is performed on a 3D face reconstructed from a single input image. In designing our system, we started by studying the underlying architecture, components, and their interactions. Then, we assessed and compared existing face reconstruction approaches. To this end, we performed an extensive analysis and experiments for evaluating their design, complexity, geometry reconstruction errors, and reconstructed texture quality. The experiments allowed us to select the most suitable approach for our proposed try-on framework. Our system considers actual glasses and face sizes to provide a realistic fit estimation using a markerless approach. The user interacts with the system by using a web application optimized for desktop and mobile devices. Finally, we performed a usability study that showed an above-average score of our eyewear virtual try-on application.


Subject(s)
Augmented Reality , Virtual Reality , Artificial Intelligence , Humans , Software
3.
Sensors (Basel) ; 21(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34833529

ABSTRACT

Smart mirrors are devices that can display any kind of information and can interact with the user using touch and voice commands. Different kinds of smart mirrors exist: general purpose, medical, fashion, and other task specific ones. General purpose smart mirrors are suitable for home environments but the exiting ones offer similar, limited functionalities. In this paper, we present a general-purpose smart mirror that integrates several functionalities, standard and advanced, to support users in their everyday life. Among the advanced functionalities are the capabilities of detecting a person's emotions, the short- and long-term monitoring and analysis of the emotions, a double authentication protocol to preserve the privacy, and the integration of Alexa Skills to extend the applications of the smart mirrors. We exploit a deep learning technique to develop most of the smart functionalities. The effectiveness of the device is demonstrated by the performances of the implemented functionalities, and the evaluation in terms of its usability with real users.


Subject(s)
Emotions , Voice , Humans , Privacy
4.
Data Brief ; 29: 105041, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31993461

ABSTRACT

This article presents a dataset with 4000 synthetic images portraying five 3D models from different viewpoints under varying lighting conditions. Depth of field and motion blur have also been used to generate realistic images. For each object, 8 scenes with different combinations of lighting, depth of field and motion blur are created and images are taken from 100 points of view. Data also includes information about camera intrinsic and extrinsic calibration parameters for each image as well as the ground truth geometry of the 3D models. The images were rendered using Blender. The aim of this dataset is to allow evaluation and comparison of different solutions for 3D reconstruction of objects starting from a set of images taken under different realistic acquisition setups.

SELECTION OF CITATIONS
SEARCH DETAIL
...