Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsy Res ; 194: 107181, 2023 08.
Article in English | MEDLINE | ID: mdl-37364342

ABSTRACT

OBJECTIVE: Generalised spike and wave discharges (SWDs) are pathognomonic EEG signatures for diagnosing absence seizures in patients with Genetic Generalized Epilepsy (GGE). The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is one of the best-validated animal models of GGE with absence seizures. METHODS: We developed an SWDs detector for both GAERS rodents and GGE patients with absence seizures using a neural network method. We included 192 24-hour EEG sessions recorded from 18 GAERS rats, and 24-hour scalp-EEG data collected from 11 GGE patients. RESULTS: The SWDs detection performance on GAERS showed a sensitivity of 98.01% and a false positive (FP) rate of 0.96/hour. The performance on GGE patients showed 100% sensitivity in five patients, while the remaining patients obtained over 98.9% sensitivity. Moderate FP rates were seen in our patients with 2.21/hour average FP. The detector trained within our patient cohort was validated in an independent dataset, TUH EEG Seizure Corpus (TUSZ), that showed 100% sensitivity in 11 of 12 patients and 0.56/hour averaged FP. CONCLUSIONS: We developed a robust SWDs detector that showed high sensitivity and specificity for both GAERS rats and GGE patients. SIGNIFICANCE: This detector can assist researchers and neurologists with the time-efficient and accurate quantification of SWDs.


Subject(s)
Epilepsy, Absence , Epilepsy, Generalized , Rats , Animals , Epilepsy, Absence/genetics , Rats, Wistar , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/genetics , Seizures/genetics , Electroencephalography , Disease Models, Animal
2.
IEEE Rev Biomed Eng ; 16: 109-135, 2023.
Article in English | MEDLINE | ID: mdl-34699368

ABSTRACT

Graph networks can model data observed across different levels of biological systems that span from population graphs (with patients as network nodes) to molecular graphs that involve omics data. Graph-based approaches have shed light on decoding biological processes modulated by complex interactions. This paper systematically reviews graph-based analysis methods of Graph Signal Processing (GSP), Graph Neural Networks (GNNs) and graph topology inference, and their applications to biological data. This work focuses on the algorithms of graph-based approaches and the constructions of graph-based frameworks that are adapted to a broad range of biological data. We cover the Graph Fourier Transform and the graph filter developed in GSP, which provides tools to investigate biological signals in the graph domain that can potentially benefit from the underlying graph structures. We also review the node, graph, and interaction oriented applications of GNNs with inductive and transductive learning manners for various biological targets. As a key component of graph analysis, we provide a review of graph topology inference methods that incorporate assumptions for specific biological objectives. Finally, we discuss the biological application of graph analysis methods within this exhaustive literature collection, potentially providing insights for future research in biological sciences.


Subject(s)
Algorithms , Neural Networks, Computer , Humans , Signal Processing, Computer-Assisted
3.
Insects ; 12(6)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205532

ABSTRACT

Males in Hymenopteran societies are understudied in many aspects and it is assumed that they only have a reproductive function. We studied the time budget of male honey bees, drones, using multiple methods. Changes in the activities of animals provide important information on biological clocks and their health. Yet, in nature, these changes are subtle and often unobservable without the development and use of modern technology. During the spring and summer mating season, drones emerge from the hive, perform orientation flights, and search for drone congregation areas for mating. This search may lead drones to return to their colony, drift to other colonies (vectoring diseases and parasites), or simply get lost to predation. In a low percentage of cases, the search is successful, and drones mate and die. Our objective was to describe the activity of Apis mellifera drones during the mating season in Northwestern Argentina using three methods: direct observation, video recording, and radio frequency identification (RFID). The use of RFID tagging allows the tracking of a bee for 24 h but does not reveal the detailed activity of drones. We quantified the average number of drones' departure and arrival flights and the time outside the hive. All three methods confirmed that drones were mostly active in the afternoon. We found no differences in results between those obtained by direct observation and by video recording. RFID technology enabled us to discover previously unknown drone behavior such as activity at dawn and during the morning. We also discovered that drones may stay inside the hive for many days, even after initiation of search flights (up to four days). Likewise, we observed drones to leave the hive for several days to return later (up to three days). The three methods were complementary and should be considered for the study of bee drone activity, which may be associated with the diverse factors influencing hive health.

4.
Sensors (Basel) ; 18(7)2018 Jul 02.
Article in English | MEDLINE | ID: mdl-30004457

ABSTRACT

This paper introduces both a hardware and a software system designed to allow low-cost electronic monitoring of social insects using RFID tags. Data formats for individual insect identification and their associated experiment are proposed to facilitate data sharing from experiments conducted with this system. The antennas' configuration and their duty cycle ensure a high degree of detection rates. Other advantages and limitations of this system are discussed in detail in the paper.


Subject(s)
Animal Identification Systems/economics , Bees , Radio Frequency Identification Device/economics , Software/economics , Animals , Bees/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...